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h  i g  h  l  i  g  h  t  s

• Designed  an  Lp  (p ≤  1)  norm-based  residual  model  to  estimate  autoregressive  (AR)  parameters.
• The  Lp  (p ≤ 1) norm  AR  model  estimates  parameters  more  robustly  than  an  L2  norm-based  AR  mode  for time  series  with  outliers.
• The  Lp  (p ≤ 1) norm  AR  holds  a lower  relative  error  of AR  parameters  and  higher  prediction  accuracy  than  L2  norm-based  methods.
• A  resting  EEG  power  spectrum  estimated  by  the Lp  (p  ≤ 1)  norm  AR  model  is  less  influenced  by ocular  artifacts  compared  with  L2  norm-based  AR.
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a  b  s  t  r  a  c  t

The  autoregressive  (AR) model  is widely  used  in  electroencephalogram  (EEG)  analyses  such  as  waveform
fitting,  spectrum  estimation,  and  system  identification.  In real applications,  EEGs  are inevitably  contam-
inated  with unexpected  outlier  artifacts,  and  this  must  be  overcome.  However,  most  of  the current  AR
models  are  based  on the  L2 norm  structure,  which  exaggerates  the  outlier  effect  due to the  square  prop-
erty  of  the  L2  norm.  In  this  paper,  a novel  AR  object  function  is  constructed  in  the  Lp  (p ≤  1)  norm  space
with  the  aim  to compress  the outlier  effects  on  EEG  analysis,  and  a fast  iteration  procedure  is developed
to  solve  this  new  AR  model.  The  quantitative  evaluation  using  simulated  EEGs  with  outliers  proves  that
the  proposed  Lp  (p  ≤  1)  AR  can  estimate  the  AR  parameters  more  robustly  than  the  Yule–Walker,  Burg
and LS  methods,  under  various  simulated  outlier  conditions.  The  actual  application  to  the  resting  EEG
recording  with  ocular  artifacts  also  demonstrates  that Lp  (p  ≤  1)  AR  can  effectively  address  the  outliers
and  recover  a resting  EEG  power  spectrum  that  is more  consistent  with  its physiological  basis.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Power spectral density (PSD) and variable states are the two
important measures for characterizing the physiological informa-
tion underlying EEGs. There are two main approaches to estimating
these measurements, nonparametric and parametric methods.
Nonparametric methods (Antoniou, 2006), such as Fourier trans-
forms and periodograms, use the observed data to directly perform
the estimation. However, this type of approach is usually problem-
atic because of leakage and frequency resolution in PSD estimates,
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which require a large number of samples. In the parametric
approach, a random signal is characterized by the parameters esti-
mated from the finite record of the data, so there is no need to
make assumption about how the data were generated. Currently,
three types of parametric models, the autoregressive (AR) model,
the moving average (MA) model and the autoregressive moving
average (ARMA) model, are used for related estimations (Antoniou,
2006), among which the AR model is by far the most widely used
due to the following merits. First, with a suitable order, it can
approximate any stationary random process. Second, the AR model
is suitable for representing spectra with narrow peaks. Third, the
AR model has a set of very simple linear equations for parame-
ter estimation so that many efficient algorithms are available (Jain
and Dandapat, 2005). Compared with AR, both the MA  and ARMA
models, as a general rule, require more coefficients to represent the
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signal spectrum information. In various studies, AR has been proven
to be able to build the more meaningful spectrum information of
EEG than the FFT-based analysis (Güler et al., 2001).

In recent years, there have been a large number of applications
using AR-related models in various EEG-related studies such as EEG
system identification, EEG power spectrum estimation, EEG net-
work analysis, and brain computer interfaces (Chen et al., 2013; Qiu,
2011; Wang et al., 2014b). Wang et al. (2014b) proposed a corrected
approach to remove the ocular artifact using AR-based system iden-
tification, resulting in substantial performance improvement. In
Chen et al. (2013), AR is used to extract the phase and frequency
information from intracranial EEGs. Dahal et al. (2014) used a time
varying AR model to extract features to delineate the attention and
distraction in the motor driving experiment. Wang et al. (2010)
developed an improved feature extraction method based on the
multivariate adaptive autoregressive (MVAAR) model for the clas-
sification of motor imagery.

In real-world applications, EEGs will usually be contaminated
with outliers due to eye blinks or head movement, which will
greatly influence the AR estimation. Most of the previous work
in this area paid less attention to the outlier effect, even though
the adopted schemes such as moving averaging and sparse con-
straint may  actually compress the outlier effect to some degree
(Songsiri, 2013). Theoretically, the previously used AR model and
its variants are based on the L2 norm structure, and the L2 norm
will exaggerate the outlier effect due to the square property of the
L2 norm (Blankertz et al., 2007; Songsiri, 2013; Xu et al., 2010).
Compared with the L2 norm, the Lp (p ≤ 1) norm has been proven
to be robust to outliers, and it has been widely used in a diversity of
signal processing applications such as denoising, EEG inverse prob-
lem, MRI/CT reconstruction, feature extraction (Chartrand, 2009; Li
et al., 2013; Lustig et al., 2007; Xu et al., 2007). In consideration of
the merits of the Lp (p ≤ 1) norm to compress the outlier effect, we
will restructure the residual equation for AR parameter estimation
in the Lp (p ≤ 1) norm space and establish a fast iteration procedure
to solve this new AR model.

2. Materials and methods

2.1. Autoregressive model

The AR model is usually expressed as:

x(n) = −
q∑

k=1

wkx(n − k) + u(n) (1)

where u(n) is the input sequence to the system and is usually con-
sidered to be zero-mean white Gaussian noise with a variance
�2

w . x(n) is the observed data, representing the output sequence.
{wk, 1 ≤ k ≤ q} is the corresponding AR parameters with q being
the order of the AR model. The system transfer function is given by

H(z) = B(z)
C(z)

= 1

1 +
∑q

k=1wkz−k
(2)

where the C(z) and B(z) represent the poles and zeros of the system
response, respectively. Based on the transfer function, the AR based
spectrum estimation at frequency f has the form

Pxx(f ) = �2
w|H(f )|2 = �2

w∣∣1 + ∑q
k=1wk e−2�kf

∣∣2
(3)

In essence, the AR model minimizes the residual errors for all
the observed samples:

E[u2
n] =

N∑
i=1

u2
n =

N∑
i=1

∣∣∣∣∣x(i) −
q∑

k=1

wkx(i − k)

∣∣∣∣∣
2

(4)

Let W = [w1, w2, . . .,  wq]T ; Y = [x(q + 1), x(q + 2), . . .,  x(N)]T, with
N being the length of signal; || • ||2 denotes the L2 norm of a matrix
or a vector; and A ∈ R(N−q)×q be the delay array:

A =

⎡
⎢⎢⎢⎣

x(q) x(q − 1) ·  · · x(1)

x(q + 1) x(q) · · · x(2)
...

...
...

x(N − 1) x(N − 2) · · · x(N − q)

⎤
⎥⎥⎥⎦ (5)

Eq. (4) can be formatted as

arg min
W

f (W) = ||Y − AW ||22 (6)

By taking the derivative of (6) with respect to W under the con-
dition df/dw = 0, we  can obtain the follow formulation:

2AT AW − 2AT Y = 0 (7)

and the objective parameters W can be estimated as

W = (AT A)
−1

AT Y (8)

In addition to the least square algorithm, other approaches
such as the Yule–Walker (Y-W) equations and the Burg method
(Antoniou, 2006) are also used to estimate the AR parameters that
can minimize the sum of the residual errors in (4). No matter what
scheme is used to estimate the AR parameters, the inherent L2 norm
structure in (4) and (6) indicates that the influence of outliers will
be exaggerated due to the square property of the L2 norm, resulting
in the biased AR parameters.

2.2. Lp (p ≤ 1) norm based autoregressive model

In real-world applications, outliers will create an unexpected
effect on related analyses such as spectrum estimation, signal
prediction. To improve the robustness of the AR parameters esti-
mation, some schemes such as sparse constraint with Lp (p ≤ 1)
norm terms are proposed in various AR variant versions to allevi-
ate the noise effect (Ping-bo and Zhi-ming, 2006). However, most of
them mainly focus on the imposing restrictions on the parameters,
leaving the main structure of the objective function in the L2 norm
space. Unfortunately, the L2 norm object function will inevitably
exaggerate the outlier effect no matter how the AR parameters are
emphasized. We  will define the AR object function in the Lp (p ≤ 1)
norm space, aiming to improve the AR robustness to the outlier
effect.

The AR object function is defined in Lp (p ≤ 1) norm space as

W∗ = arg min
W

f ∗(W) = arg min
W

||Y − AW ||pp

= arg min
W

N−q∑
i=1

|xq+i − A(i, :)W |p (9)

where || • ||p denotes the Lp (p ≤ 1) norm of a vector; we refer to
this model as the Lp-AR estimation. The gradient for this function
is

g = p

n−q∑
i=1

|xq+i − A(i, :)W |p−1sgn(i)(−AT (i, :)) (10)
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