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• Microsegmentation  suite  that  differentiates  transition  states  from  stable  ERP  microstates.
• Differentiation  of event-related  brain  microstates  from  changes  in global  field  power.
• Integrated  within-  and  between-subject  bootstrapping  procedures  to assess  solution  robustness.
• Microstate  algorithm  to promote  mapping  both  which  and  when  brain  regions  is activated  by a task.
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a  b  s  t  r  a  c  t

Background:  Since  Berger’s  first  EEG  recordings  in  1929,  several  techniques,  initially  developed  for  inves-
tigating  periodic  processes,  have  been  applied  to  study  non-periodic  event-related  brain  state  dynamics.
New  method:  We  provide  a theoretical  comparison  of  the two  approaches  and  present  a  new  suite of  data-
driven  analytic  tools  for  the  specific  identification  of  the brain  microstates  in  high-density  event-related
brain  potentials  (ERPs).  This suite  includes  four  different  analytic  methods.  We  validated  this  approach
through  a series  of theoretical  simulations  and  an  empirical  investigation  of  a  basic  visual  paradigm,  the
reversal  checkerboard  task.
Results:  Results  indicate  that the  present  suite  of data-intensive  analytic  techniques,  improves  the
spatiotemporal  information  one  can  garner  about  non-periodic  brain  microstates  from  high-density
electrical  neuroimaging  data.
Comparison  with existing  method(s):  Compared  to the existing  methods  (such  as  those  based  on  k-
clustering  methods),  the  current  micro-segmentation  approach  offers  several  advantages,  including  the
data-driven  (automatic)  detection  of non-periodic  quasi-stable  brain  states.
Conclusion:  This suite  of quantitative  methods  allows  the automatic  detection  of  event-related  changes
in  the  global  pattern  of brain  activity,  putatively  reflecting  changes  in  the  underlying  neural  locus  for
information  processing  in  the  brain,  and event-related  changes  in overall  brain  activation.  In addi-
tion,  within-subject  and between-subject  bootstrapping  procedures  provide  a  quantitative  means  of
investigating  how  robust  are  the  results  of  the micro-segmentation.
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1. Introduction

The rapid growth of large-scale, high-spatial resolution neu-
roimaging technology has advanced our understanding of the
neural underpinnings of various complex cognitive and social pro-
cesses. For instance, work in cognitive and social neuroscience has
identified the neural correlates of information processing opera-
tions, ranging from basic perceptual processing (e.g., checkerboard)
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to more complex cognitive (e.g., object or face recognition, deci-
sion making, action understanding, embodied cognition) and social
processing (e.g., pair bonding, love, empathy, cooperation). How-
ever, high-spatial resolution neuroimaging techniques, such as
functional magnetic resonance imaging (fMRI), have been limited
in terms of the temporal information they provide in studies of
brain function. In addition, the cost of fMRI has placed constraints
on the statistical power of most studies, which in turn has compro-
mised the replicability of research findings (cf. Button et al., 2013;
Cacioppo et al., 2013a).

A key theoretical objective in neuroscience and medicine is not
only to specify what brain areas are recruited during a behavioral
task, but also to specify when and in what specific combinations
they are activated (e.g., Cacioppo et al., 2013b; Crites et al., 1995;
Decety and Cacioppo, 2012; Ito et al., 2004; Ortigue et al., 2004,
2005; Ortigue and Bianchi-Demicheli, 2008). By providing detailed
information about the relationship between neuronal activity (i.e.,
post-synaptic dendritic potentials of a considerable number of
neurons that are activated in pattern that yield a dipolar field)
and the temporal resolution (millisecond by millisecond) of each
component information processing operation required for behav-
ioral performance, high-density electroencephalographic (EEG)
recordings and averaged EEG (event-related potentials, ERPs) have
provided a useful additional tool in investigations of brain function.
Whereas fMRI analyses are performed in source space, EEG/ERP
analyses are performed in sensor space, with high-density sensor
recordings producing more detailed information about changes in
brain activity measured across time and sensor space.

Since the first EEG study by German neurologist Hans Berger
(1929), numerous techniques have been developed for investi-
gating the brain state dynamics of periodic processes in the EEG,
including standard waveform analyses, Fourier analysis, inde-
pendent component analysis (ICA), principal component analysis
(PCA), and k-means cluster analyses. Over the years, some have
argued that measuring peaks and troughs was sufficient to the
temporal processing of the brain, while others (e.g., Donchin and
Heffley, 1978) argued, quite persuasively, that another approach,
such as a statistical decomposition of the evoked brain states, was
necessary. In the current work, we present a new method for iden-
tifying the underlying component structure of an ERP – specifically,
we present a new method for identifying non-periodic brain state
dynamics for the micro-segmentation and analysis of averaged
high-density ERPs.

2. Non-periodic brain microstates

Over the past three decades, efforts have been made to comple-
ment the traditional analyses of ERP peaks and troughs at specific
electrode positions with more comprehensive analyses of time-
varying activity across the entire scalp. For instance, introduced
in the 1980s by Dietrich Lehmann, the brain microstate approach
(Lehmann and Skrandies, 1980) is a method to identify stable con-
figurations of global electric brain activity (rather than signals
collected from one electrode). Because this approach is extensively
used and has been detailed previously in several review articles
and scientific reports (Brunet et al., 2011; Decety and Cacioppo,
2012; Michel et al., 1999, 2001; Murray et al., 2008; Pascual-Marqui
et al., 1995; Ortigue et al., 2004, 2005, 2009, 2010), here we provide
only the essential details. With respect to ERP analyses, the brain
microstate approach considers data in the spatial domain first, and
then in the temporal domain, providing a display of the constantly
changing spatial distribution of the brain activity. The goal of the
brain microstate approach is to provide information about the brain
activity associated with the sequence of discrete (and putatively
non-periodic) information processing operations evoked by the

presentation of a stimulus within the context or a particular exper-
imental task, with exogenous ERP components sensitive to the
characteristics of the stimulus and endogenous ERP components
sensitive to the stimulus in the context of the task. This sequence
of information processing is composed of a series of stable brain
activities, called brain microstates, each of which is characterized
by the performance of specific cognitive computations and a rela-
tively stable spatial distribution of brain activity. For instance, after
a visual presentation of a face, the sequence (also called syntax) of
various evoked brain microstates is thought to reflect the different
steps of face processing (cf. Pizzagalli et al., 2000, 2002; Lehmann
et al., 2005).

The successive occurrence of brain microstates does not imply
that their brain networks occur in a sequential way  (Pascual-
Marqui et al., 1995). The underlying mechanism by which the brain
enters a microstate with a given brain network may  be composed of
any number of sequential or parallel physiological sub-processes.
Investigators can address this issue in several ways. For instance,
lesion studies permit tests of the role of and relationship (e.g.,
dependence) between temporally activated neural regions; fMRI
can be used to investigate functional connectivity between regions
of activation; and experimental studies in which microstate seg-
mentation is applied to high-density EEG/ERP data can be used to
test contrasting hypotheses (brain models) to explain the chrono-
architecture of the observed microstates.

Common brain areas may  sustain different microstates, and the
same microstate may  be observed in two  different conditions (e.g.,
fear faces and sad faces). In the latter case, the intensity of the acti-
vation and/or the onset or the duration of this microstate, but not
its configuration, may  significantly vary between conditions. For
instance, one microstate may  occur earlier in one condition com-
pared with another condition, which may  provide valuable infor-
mation regarding the temporal dynamic of these two  conditions.

The notion underlying the brain microstate approach is that
each microstate refers to a time-limited information processing
operation. Consistent with this notion, a growing body of studies
shows that the presence of different brain microstates is associated
with distinct cognitive operations (Lehmann and Skrandies, 1980).
As such, the global pattern of brain electrical activity identified as
a microstate is characterized by its electrical maxima (positive and
negative), the orientation of its maxima (anterior, posterior), the
location of its maxima (left hemisphere, right hemisphere), and the
onset and duration of the configuration (Lehmann and Skrandies,
1980, 1984). Each brain microstate may  remain significantly stable
for a certain amount of time (e.g., for tens to hundreds of millisec-
onds), and then changes into another brain microstate that remains
stable again (e.g., Cacioppo et al., 2013a,b; Decety and Cacioppo,
2012; Ortigue et al., 2009, 2010). This approach suggests that
the global pattern of brain electrical activity is modeled as being
composed of a time sequence of decomposable brain microstates
(Lehmann and Skrandies, 1980; Pascual-Marqui et al., 1995).

In the previous literature, these brain microstates have typi-
cally been identified using data clustering techniques (e.g., k-means
cluster analysis) on the group-averaged ERPs of each experimen-
tal condition to identify the start, end, and nature of each brain
microstate. Given the group averaged ERP data set consists of N
discrete samples over n (e.g. 128 or 256) electrodes, the activity
across the n electrodes at each discrete sample can be expressed
as a topographic scalp potential map. In the classic approach to
microstate segmentation, the N topographic maps are segmented
by the k-means algorithm. The value of k defines the number of
discrete microstates that will be identified; k can range from 1 to
N, but in practice is usually limited to 1–20 for a time period of
500 ms  post-stimulus onset. First, k timeframes (where timeframe
refers to the electric potentials from all electrodes within a discrete
range of time in the ERP) are selected at random. These k selected
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