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• We  review  integration  methods  for  imaging  and  genomic  data  analysis.
• We  focus  on  our  efforts  in  developing  sparse  models  for  imaging  and  genomic  data  integration.
• We  show  real  examples  on applications  of  sparse  models  to  detecting  genes  and  diseases  diagnosis.
• We  give  a perspective  on  future  research  directions  in  imaging  genomics.
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a  b  s  t  r  a  c  t

The  development  of advanced  medical  imaging  technologies  and  high-throughput  genomic  measure-
ments  has  enhanced  our ability  to  understand  their  interplay  as  well  as  their relationship  with  human
behavior  by  integrating  these  two  types  of  datasets.  However,  the  high  dimensionality  and  heterogeneity
of  these  datasets  presents  a challenge  to conventional  statistical  methods;  there  is  a  high  demand  for
the  development  of both  correlative  and  integrative  analysis  approaches.  Here,  we  review  our recent
work on  developing  sparse  representation  based  approaches  to address  this  challenge.  We  show  how
sparse  models  are  applied  to the  correlation  and  integration  of imaging  and  genetic  data  for biomarker
identification.  We  present  examples  on how  these  approaches  are  used  for the  detection  of risk  genes
and  classification  of  complex  diseases  such  as  schizophrenia.  Finally,  we  discuss  future  directions  on  the
integration  of  multiple  imaging  and  genomic  datasets  including  their  interactions  such  as  epistasis.

© 2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

In the past decades, increasing development of medical imag-
ing and genomic techniques provides new opportunities to study
tissue structure, function, and genetic variation as well as their
relationship with human behavioral components, e.g., cognitive
phenotypes and psychiatric disorders. For example, medical imag-
ing measurements such as structural magnetic resonance imaging
(sMRI), functional MRI  (fMRI), diffusion tensor imaging (DTI) and
positron emission tomography (PET), provide quantitative mea-
surements of structural information at brain tissue level, dynamic
blood oxygenation-level dependent (BOLD) response of neural
activity and brain structural and functional connectivity. In addi-
tion, genetic measurements such as single polymorphism (SNP),
gene expression, copy number variation (CNV) and proteomics can
reveal structural and functional variations at molecular level. The
goal of imaging genetics is to identify genetic factors that influ-
ence the intermediate quantitative measurements from anatomical
or functional images, and the cognition and psychiatric disorders
in humans. Rasetti and Weinberger (2011) described a cascade of
imaging genetic studies, in which mutations start from genetic
level to cellular processes, to the system level, e.g., brain struc-
ture, function and integrity, and eventually to human behaviors.
Numerous examples like this demonstrate that the fusion of
imaging and genetics will facilitate the understanding of the patho-
physiology, the diagnosis of complex and heritable psychiatric
disorders and the optimization of treatments in a personalized
manner.

In recent imaging genetic studies, neural imaging endopheno-
types (or intermediate phenotype) derived from diverse medical
images, are commonly used for genetic analysis. By the definition
of ‘endophenotype’ by psychiatric geneticists (Shen et al., 2013;
Gottesman and Gould, 2003), an endophenotype should: (1) be
associated with the illness/disorder of interest; (2) be heritable;
(3) be state-independent; (4) exist temporally before the onset
of the clinical illness in the pathophysiological pathway to the
emergence of the clinical syndrome; (5) be found with higher fre-
quency in healthy relatives of illness/disorder than in the general
population. Each of these criteria is based on the hypothesis that
the effects of susceptible genes will be more penetrated to the
endophenotyes. The endophenotypes are considered to be closer to
the biology of genetic function than the diagnostic results from self-
reported and questionnaire-based clinical assessments (Gottesman
and Gould, 2003; Meyer-Lindenberg and Weinberger, 2006), which
can boost the causal variants detection power. Some quantitative
endophenotypes derived from brain imaging are reproducible and
reliable with high heritability, and can accommodate highly het-
erogeneous symptoms from patients in the same group. For these
reasons, obtaining reliable and heritable endophenotypes is critical
for imaging genetics studies.

Many endophenotypes have been used in imaging genetic stud-
ies such as voxel-, vertex-, surface- or connection-based measures
from structural, functional or diffusion images, respectively. For
example, on structural MRI, the volumetric measures of total cere-
bral and gray and white matters (Nymberg et al., 2013; Baaré et al.,
2001), cortical thickness and cortical area (Winkler et al., 2010)
have been studied as quantitative traits. On rest- or task-functional
MRI  images, there are functional endophenotypes utilized such as
the extent of activation or deactivation for each voxel responding to
the task-related stimuli, t-test contrast map, and functional brain
connectivity (van den Heuvel et al., 2013). On DTI images, brain
integrity (e.g., fractional anisotropy and mean diffusivity), meas-
ures of coherent direction of axons (e.g., radial diffusivity and axial
diffusivity) (Jahanshad et al., 2013; Kochunov et al., 2010) and the
anatomical connectivity such as the measurement of fiber density
or integrity have also been explored. Moreover, due to the high

resolution of brain imaging (e.g., structural MRI), we can analyze
the genetic influence on diverse imaging endophenotypes across
the entire brain, which facilitates the understanding of underlying
neurobiological mechanism of psychiatric disorders.

Fig. 1 shows an integrative approach for combining imaging and
genetics techniques for biomarker detection, from which multi-
ple psychiatric disorders or subtypes can be better classified. We
will elaborate on this approach in the following three aspects: (1)
Between modality analysis to explore the correspondence or asso-
ciation between imaging and genetic data. One type of data is taken
as an endophenotype (e.g., brain structure (Winkler et al., 2010),
fiber integrity (Jahanshad et al., 2013), functional connectivity and
network (Thompson et al., 2013)) to find the correlated or asso-
ciated variables in the other data (e.g., genotype (Filippini et al.,
2009)). The imaging endophenotypes are usually used as quantita-
tive traits to explore the potential genetic risk factors. As reviewed
in (Liu and Calhoun, 2014; Ge et al., 2013), the research in this
area has evolved from candidate approaches to the whole genome
and whole brain investigation, and many complicated models are
proposed to account for the increasing number of variables. (2)
Integration of imaging and genetic data for biomarker identifi-
cation. A variety of medical imaging modalities (e.g., sMRI, fMRI
and DTI) provide different insights on the change of brain or neu-
ron activity at tissue-level, while genetic data (e.g., SNP, mRNA
expression, DNA methylation and proteomics) measure different
layers of genetic information at the molecular level. These differ-
ent types of data are complementary, so combing these multiple
modalities is likely to facilitate a better identification of biomarkers
and a more comprehensive diagnosis of complex diseases. (3) Sub-
typing or classification of diseases by using biomarkers extracted
from multimodal data. The identified biomarkers from imaging and
genetic data contain complementary information about multiple
psychiatric disorders (e.g., schizophrenia, bipolar and unipolar dis-
orders). By using these biomarkers as features and input into a
linear or non-linear classifier, we  can achieve better disease clas-
sification, translating into more accurate diagnosis and ideally a
clinical impact.

Many processing strategies and analysis approaches have been
proposed to combine imaging and genetic information. For exam-
ple, as reviewed in (Hibar et al., 2011a), between modality analysis
methods can be categorized into univariate and multivariate imag-
ing genetic analysis. Voxel-wise genome-wide association study
(vGWAS; Stein et al., 2010) and voxel-wise gene-wide study (vGe-
neWAS; Hibar et al., 2011b) have been used to screen each pair
of SNP/gene and voxel in maps of regional brain volume under
the control of multiple comparisons. Canonical correlation anal-
ysis (CCA; Correa et al., 2008; Sui et al., 2010), partial least square
(PLS; Wold et al., 1983; Krishnan et al., 2011) and parallel ICA (Liu
et al., 2009) have been applied to extract a pair of correlated latent
variables from imaging and genetic datasets. Kernel machine based
(Ge et al., 2012) and Bayes methods (Stingo et al., 2013) have also
been proposed for imaging genetics analysis. For biomarker iden-
tification, joint ICA (Sui et al., 2011), multi-set CCA (Correa et al.,
2010), multi-table PLS (Caplan et al., 2007) and multi-task learning
methods (Zhou et al., 2011) have been used in modeling multi-
modal imaging, genetic and human behavioral data. Based on the
identified biomarkers, a variety of classifiers such as support vec-
tor machine (Mourão-Miranda et al., 2005; Yang et al., 2010a) and
multiple kernel learning (Castro et al., 2014; Ji et al., 2008) have
been applied to the classification of complex diseases.

Despite the success of these methods in the analysis of imaging
and genetic data, there are still challenges due to the high dimen-
sionality and heterogeneity of these datasets. For example, many
conventional statistical methods such as CCA, PLS and ICA perform
poorly for data with smaller sample size but with larger number of
features/variables (e.g., voxels and SNPs). A dimensional reduction
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