
Journal of Neuroscience Methods 239 (2015) 47–64

Contents lists available at ScienceDirect

Journal  of  Neuroscience  Methods

jo ur nal ho me  p age: www.elsev ier .com/ locate / jneumeth

Computational  Neuroscience

Assessing  the  strength  of  directed  influences  among  neural  signals:
An  approach  to  noisy  data

Linda  Sommerladea,b,c,d,e,∗∗, Marco  Thiela,b,  Malenka  Maderc,d,f,  Wolfgang  Maderc,d,
Jens  Timmerc,d,g, Bettina  Platth,  Björn  Scheltera,b,c,∗

a Institute for Complex Systems and Mathematical Biology, University of Aberdeen, King’s College, Old Aberdeen AB24 3UE, United Kingdom
b Institute for Pure and Applied Mathematics, University of Aberdeen, King’s College, Old Aberdeen AB24 3UE, United Kingdom
c Freiburg Center for Data Analysis and Modeling (FDM), University of Freiburg, Eckerstrasse 1, 79104 Freiburg, Germany
d Institute for Physics, University of Freiburg, Hermann-Herder-Strasse 3a, 79104 Freiburg, Germany
e Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstrasse 19, 79104 Freiburg, Germany
f Department of Neuropediatrics and Muscular Disease, University Medical Center of Freiburg, Mathildenstrasse 1, 79106 Freiburg, Germany
g BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany
h Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom

h  i  g  h  l  i  g  h  t  s

• Inference  of  Granger  causality  in  noisy  signals.
• Analytical  calculations  explaining  false  positive  conclusions  in  the  presence  of  noise.
• Derivation  of  statistics  that  enable  reliable  inference  of Granger  causality  from  noisy  signals.
• Application  to sleep  stage  in  mice  EEG  data.
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a  b  s  t  r  a  c  t

Background:  Measurements  in the  neurosciences  are  afflicted  with  observational  noise.  Granger-causality
inference  typically  does  not  take  this  effect  into  account.  We  demonstrate  that  this  leads  to  false  positives
conclusions  and  spurious  causalities.
New  method:  State  space  modelling  provides  a convenient  framework  to  obtain  reliable  estimates  for
Granger-causality.  Despite  its previous  application  in  several  studies,  the  analytical  derivation  of  the
statistics  for  parameter  estimation  in  the  state  space  model  was missing.  This  prevented  a  rigorous
evaluation  of  the results.
Results:  In  this  manuscript  we  derive  the  statistics  for parameter  estimation  in  the state  space  model.  We
demonstrate  in an  extensive  simulation  study  that  our  novel  approach  outperforms  standard  approaches
and avoids  false  positive  conclusions  about  Granger-causality.
Comparison with  existing  methods:  In comparison  with  the  naive  application  of  Granger-causality  infer-
ence,  we  demonstrate  the  superiority  of  our  novel  approach.  The  wide-spread  applicability  of  our
procedure  provides  a statistical  framework  for future  studies.  The  application  to mice  electroencephalo-
gram  data  demonstrates  the immediate  applicability  of our approach.
Conclusions:  The  analytical  derivation  of  the  statistics  presented  in  this  manuscript  enables  a  rigorous
evaluation  of  the  results  of  Granger  causal  network  inference.  It is  noteworthy  that  the  statistics  can  be
readily  applied  to  various  measures  for Granger  causality  and  other  approaches  that  are  based  on  vector
autoregressive  models.
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1. Introduction

Complex systems are relevant in different branches of physics, economics, sociology, biology or the neurosciences. They can be inves-
tigated either by explicit first principle modelling of the dynamics, the so-called direct approach, or by inferring the system based on
observed data, i.e. the inverse approach. The first requires profound a priori knowledge about the investigated system while the second
relies on measurements of the system.

Within the framework of data-based modelling, various techniques have been developed. For many years, the methodological develop-
ments and concepts evolved independently in the different disciplines. In the past decade however, the transfer of knowledge across the
borders of the different research fields has increased substantially, for example when methods dealing with non-linear stochastic systems
have been introduced (Schelter et al., 2006).

Networks of interacting nodes, each with its own  dynamics, are a key mathematical tool for the description of complex systems
(Strogatz, 2001). Depending on the particular application, the dynamics of the individual nodes, their coupling structure or their col-
lective behaviour all determine the dynamics of the system. In the neurosciences, for instance, detecting interactions between signals,
i.e. the coupling structure among nodes, is of particular interest. Understanding brain networks promises to disclose the biological
basis underlying natural behaviour or certain diseases (e.g. Hesse et al., 2003; Tass et al., 1998; Pitzalis et al., 1998; Keyl et al., 2000;
Nollo et al., 2005; Bowers and Murray, 2004). Several techniques have been proposed so far to infer the network structure of complex
systems from observed signals. These include but are not limited to transfer entropy (Schreiber, 2000; Staniek and Lehnertz, 2008),
recurrences in state space (Arnhold et al., 1999; Chicharro and Andrzejak, 2009; Romano et al., 2007), mutual information (Pompe et al.,
1998; Paluš and Stefanovska, 2003; Paluš and Vejmelka, 2007; Vejmelka and Paluš, 2008; Frenzel and Pompe, 2007), phase dynamics
(Rosenblum and Pikovsky, 2001; Rosenblum et al., 2002), coherence (Halliday and Rosenberg, 2000; Dahlhaus, 2000; Nolte et al., 2008),
the Fokker Planck formalism (Prusseit and Lehnertz, 2008; Bahraminasab et al., 2009), or autoregressive modelling (Dahlhaus and Eichler,
2003; Schack et al., 1995; Eichler, 2000; Korzeniewska et al., 1997; Kamiński et al., 1997; Kamiński and Blinowska, 1991; Arnold et al.,
1998).

When investigating interactions among processes, cross-spectral analysis is often chosen (Brockwell and Davis, 1998). If the number of
processes exceeds two, the question arises, whether interactions are direct or indirect. To address this challenge, the concept of partialisation
is used (Dahlhaus, 2000; Brillinger, 1981). Partialisation aims at revealing direct connections by subtracting influences of third processes
(Schad et al., 2009).

Since (partial) cross-spectra are Hermitian, it is not possible to infer the direction of an influence from coherences. Additional
information of the complex valued cross-spectra can be reveal by analysing their phases. The phase spectra can be used to draw con-
clusions about the direction of an influence. However, these conclusions are hampered if, for instance, filters are present. Since filters
are present in many applications, a straight forward interpretation of the phase spectra is usually not possible. Other approaches to
investigate the direction of an influence use the concept of causality. Many methods (e.g. Hesse et al., 2003; Geweke, 1982, 1984; Chen
and Wasterlain, 2006; Dhamala et al., 2008; Baccalá and Sameshima, 2001; Sameshima and Baccalá, 1999; Eichler, 2006; Kamiński
and Blinowska, 1991) are based on Granger’s definition of causality (Granger, 1969). Briefly, this definition states that a process x1
is causal for another process x2, if x1 is useful for the prediction of the future of x2. Linear Granger-causality is typically modelled by
means of vector autoregressive processes, which are estimated via multivariate Yule–Walker equations or similar approaches (Lütkepohl,
1993).

The estimators for the vector autoregressive models do not account for observational noise, which afflicts almost any observed sig-
nal. There are different reasons for an inaccurate measurement, such as the precision of the measurement device or influences from
the environment. This inevitably leads to a misestimation of the parameters; typically parameters are underestimated (Brockwell and
Davis, 1998). We  emphasise that in particular an over-estimation of certain parameters has a severe impact on Granger-causality analysis.
As also discussed in Newbold (1978), Nalatore et al. (2007), and Nolte et al. (2008), we  argue that this leads to spurious causalities
independently of the specific measure for Granger-causality used, providing a more detailed view on the relation between parame-
ter values and the severity of the misestimation for various signal to noise ratios. This explains in particular how under- as well as
over-estimation of parameters leads to spurious interactions. Based on analytical calculations we reveal the cause of these spurious
causalities. To this aim, we discuss a vector autoregressive process of order 2, to simplify the notation. We  then investigate in details
the consequences of the misestimation. We  will also show that increasing the order of the fitted process yields an improved estima-
tor. However, this is not sufficient to avoid false positive conclusions in the presence of observational noise (Timmer, 1998). Therefore,
in this manuscript, state space modelling is used to explicitly include observational noise in the model. The idea of state space mod-
elling for improving measures quantifying Granger-causality has been introduced in Winterhalder et al. (2005). This triggered further
research that discussed the matter in more detail (Nalatore et al., 2007) and also an application to neurophysiological data (Nalatore
et al., 2009). The corresponding statistics to assess the statistical significance of these Granger-causality measures, however, has not
been thoroughly investigated. Typically Monte-Carlo based procedures, numerical approximations or bootstrap based approaches are
employed to approximate the statistics for these measures. In this manuscript we  assume that the system under investigation can
be approximated by a linear system. Based on this assumption, we  derive an analytical statistics for Granger-causality based mea-
sures.

Throughout, we demonstrate our results for a specific measure for Granger-causality, the so-called renormalised partial directed
coherence (rPDC) (Schelter et al., 2009). It is a generalisation of partial directed coherence, which was  introduced to quantify Granger
causal influences (Baccalá and Sameshima, 2001) in the neurosciences (Sameshima and Baccalá, 1999; Nicolelis and Fanselow, 2002).
The advantage of renormalised partial directed coherence is that it allows us to interpret the results also in terms of the strengths
of interactions and it enables a rigorous comparison of the results. We  emphasise though that the results apply to any Granger-
causality measure that is based on vector autoregressive processes. The results are presented in a way that they can readily be
generalised.
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