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h  i  g  h  l  i g  h  t  s

• A  multi-modal  neuroimaging  approach  is used  to investigate  the  utility  of  t-distributed  stochastic  neighbour  embedding  (t-SNE)  in identifying  ‘unseen’
population  patterns.

• Method  able  to detect  gender  related  brain  differences  in  a healthy  population.
• Ability  to detect  relevant  patterns  improves  with  additional  imaging  modalities.
• An unsupervised  predictive  classifier  developed  from  detected  clusters  able  to predict  individual  subject’s  gender  with  high  accuracy.
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a  b  s  t  r  a  c  t

Background:  Neuroimaging  machine  learning  studies  have  largely  utilized  supervised  algorithms  –  mean-
ing they  require  both  neuroimaging  scan  data  and  corresponding  target  variables  (e.g. healthy  vs.
diseased)  to  be successfully  ‘trained’  for  a prediction  task.  Noticeably,  this  approach  may  not  be  opti-
mal  or  possible  when  the  global  structure  of  the  data  is  not  well  known  and  the  researcher  does  not have
an  a priori  model  to  fit the  data.
New  method:  We  set  out  to  investigate  the utility  of  an unsupervised  machine  learning  technique;  t-
distributed  stochastic  neighbour  embedding  (t-SNE)  in  identifying  ‘unseen’  sample  population  patterns
that  may  exist  in  high-dimensional  neuroimaging  data. Multimodal  neuroimaging  scans  from  92  healthy
subjects  were  pre-processed  using  atlas-based  methods,  integrated  and input  into  the  t-SNE  algorithm.
Patterns  and clusters  discovered  by the  algorithm  were  visualized  using  a 2D  scatter  plot  and  further
analyzed  using  the  K-means  clustering  algorithm.
Comparison with  existing  methods:  t-SNE  was  evaluated  against  classical  principal  component  analysis.
Conclusion:  Remarkably,  based  on  unlabelled  multimodal  scan  data,  t-SNE  separated  study  subjects
into  two  very  distinct  clusters  which  corresponded  to  subjects’  gender  labels  (cluster  silhouette  index
value  = 0.79).  The  resulting  clusters  were  used  to develop  an  unsupervised  minimum  distance  cluster-
ing  model  which  identified  93.5%  of  subjects’  gender.  Notably,  from  a neuropsychiatric  perspective  this
method  may  allow  discovery  of  data-driven  disease  phenotypes  or sub-types  of treatment  responders.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Machine learning techniques have recently shown promise in
decoding individual subjects’ brain state using high-dimensional
neuroimaging scan data. Notable applications include; diagnostic
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or categorical predictions (e.g. healthy vs. diseased) (Doehrmann
et al., 2013; Ecker et al., 2010a,b; Johnston et al., 2014; Mwangi
et al., 2012, 2014; Zeng et al., 2012), and predictions of contin-
uous demographic, cognitive and clinical variables (e.g. illness
severity scores or chronological age) (Dosenbach et al., 2010;
Feis et al., 2013; Marquand et al., 2010; Mwangi et al., 2012,
2013a; Wang et al., 2010). In addition, applications utilizing these
techniques to fuse multi-scale biological measurements (e.g. genet-
ics and imaging) to make individualized brain state predictions
have also been reported (Brodersen et al., 2014; Kohannim et al.,
2012; Mwangi et al., 2013b; Wang et al., 2012; Ziegler et al.,
2012).
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However, whilst these brain decoding studies have significantly
advanced our understanding of neuropsychiatric disorders and
even set pace for potential diagnostic and prognostic applications,
this has not been without practical limitations. First, a majority of
these studies have noticeably been ‘supervised’  – meaning target
labels (e.g. healthy vs. disease) are used in ‘training’ the classifier.
Second, supervised techniques are not capable of elucidating natural
groupings of data points in a high-dimensional space without mak-
ing a priori hypotheses (Jain, 2010; Mwangi et al., 2013b). Third,
supervised techniques are largely confirmatory – meaning that the
researcher wants to confirm the validity of a hypothesis or set of
assumptions (Jain, 2010). For example, a popular assumption in
neuroimaging predictive classification studies (e.g. health vs. dis-
ease) is that brain differences (e.g. structure or function) between
‘healthy’ and ‘diseased’ groups may  allow accurate predictions at
an individual subject level.

In view of the above, although supervised techniques have made
significant contributions in elucidating the pathophysiology of
neuropsychiatric disorders (Johnston et al., 2012; Linden, 2012;
Mwangi et al., 2012); this has not been without criticism. For exam-
ple, Savitz and Colleagues (2013) recently raised doubts on the
popular assertion that supervised machine learning applications in
neuroimaging may  lead to objective biomarkers of psychiatric dis-
orders given that these algorithms are often ‘trained’ using target
labels (e.g. patient vs. control) largely derived from subjective clin-
ical diagnoses (e.g. diagnostic and statistical manual – DSM-IV or
DSM 5). Notable exemptions include those utilizing post-mortem
ground-truth labels to train and test a machine learning model
(Klöppel et al., 2008).

Conspicuously, unsupervised machine learning techniques are
practical alternatives which may  allow discovery of biologically
relevant groupings or clusters in the data without requiring
user defined target labels. These clusters may  correspond to
‘new’ data-driven phenotypic subtypes or demographic group-
ings and there is active research work in this area. For example
Aljabar et al. (2011) utilized an unsupervised manifold learn-
ing approach to characterize neonatal brain development. Most
recently, Brodersen and Colleagues (2014) reported an unsu-
pervised machine-learning proof-of-concept study examining the
feasibility of defining subgroups in psychiatric spectrum disorders
using generative embedding techniques. Fair and Colleagues (2012)
utilized a graph theory approach to identify unique data-driven
neuropsychological subgroups in children with attention deficit
hyperactivity disorder (ADHD).

In this report we studied the utility of an unsupervised machine
learning technique t-distributed stochastic neighbour embed-
ding (t-SNE) (Van der Maaten and Hinton, 2008) in analyzing
high-dimensional multimodal neuroimaging scan data. The main
objectives of this study were; first to investigate t-SNE’s ability
to reduce the dimensionality of multimodal neuroimaging scan
data into a visually plausible 2D space. Second, to investigate t-
SNE’s ability to reveal natural groupings or clusters in the study
sample whilst concurrently capturing the local structure of the neu-
roimaging scan data (e.g. subjects’ anatomical differences). Notably,
t-SNE is an ‘unsupervised’ data-driven technique which translates a
high-dimensional dataset into a pair-wise similarity matrix whilst
simultaneously capturing both local and global structure of the data
(e.g. population clusters) (Van der Maaten and Hinton, 2008).

Specific benefits of using t-SNE over traditional dimensionality
reduction or manifold learning techniques such as principal compo-
nent analysis (PCA) (Jolliffe, 1972), multidimensional scaling (MDS)
(Kruskal, 1964) and local linear embedding (LLE) (Roweis and Saul,
2000) should be noted. First, PCA and MDS  are linear transforma-
tions of the high-dimensional data and may  not always be able
to capture non-linear relationships in a high-dimensional dataset
(Amir et al., 2013; Bishop, 1995; Ji, 2013; Mwangi et al., 2013b; Van

der Maaten and Hinton, 2008). Second, a majority of dimensional-
ity reduction techniques are not capable of retaining both local and
global structures of the data simultaneously during the dimension-
ality reduction process (Van der Maaten and Hinton, 2008). Most
notably, t-SNE recently showed a superior performance in visualiz-
ing subjects’ neuroimaging scan data from a multi-centre study as
compared to MDS  (Ridgway and Ashburner, 2012; Ridgway et al.,
2012). However, for reviews and subsequent empirical evaluations
of these dimensionality reduction techniques, the reader is pointed
elsewhere (Lee and Verleysen, 2007; Mwangi et al., 2013b; Van der
Maaten and Hinton, 2008).

In this study, high-dimensional multimodal neuroimaging scan
data (T1-weighted, diffusion tensor imaging, T2-relaxation time
and proton density) from 92 healthy subjects were pre-processed,
fused and input into the t-SNE algorithm. The algorithm returned
a new set of variables for each subject in a ‘reduced’ 2D space. The
K-means clustering algorithm and a quantitative cluster evaluation
metric (silhouette width index value) were used to evaluate popu-
lation clusters present in the new 2D space. A major objective here
was to elucidate whether the technique is able to discover biolog-
ically relevant clusters from neuroimaging scan data. Markedly, a
major motivation for utilizing multimodal scan data was  to estab-
lish whether neuroimaging data from multiple modalities would
lead to improved detection of relevant sub-groups or clusters.

2. Materials and methods

This study was  approved by the University of Texas Health
Science Center at Houston local institute review board (IRB) and
was compliant with the Health Insurance Portability Accountabil-
ity Act (HIPAA) guidelines. A total of 92 (44 Males, 48 Females)
healthy subjects with age ranging from 18.7 to 61.8 years;
mean/SD = 37.09/10.55 and identified as neurologically normal
before scanning were included in this study. There were no sig-
nificant age differences between genders.

2.1. MRI  acquisition protocol

Subjects were scanned using a 3.0 T Philips Intera scan-
ner. T1-weighted scans were acquired using a 3D-spoiled
gradient-echo with a field-of-view = 240 × 240 mm2, isotropic
voxel size = 0.94 mm,  and 2-dimensional dual spin echo images
(TE1/TE2/TR = 10/90/5000 ms), and in the axial plane with 3 mm
slice thickness. Diffusion-weighted data were acquired using a
single-shot spin echo diffusion sensitized echo-planar imaging
(EPI) sequence with a balanced icosa21 encoding scheme as
demonstrated elsewhere (Hasan et al., 2007; Walimuni et al.,
2011). The diffusion-weighted sequence had a sensitization of
b = 1000 s mm−2, repetition and echo times of TR = 6.1 s and
TE = 84 ms  respectively with a slice thickness of 3 mm and 44
axial slices covering the whole brain. Similarly, the sequence
had a square field-of-view = 240 × 240 mm2, an image matrix of
256 × 256 and 8 non-diffusion weighted images.

2.2. Image pre-processing and feature extraction

The image pre-processing pipeline followed in this study is
shown in Fig. 1 and also detailed elsewhere (Walimuni et al., 2011;
Walimuni and Hasan, 2011).

T1-weighted scans were automatically segmented into both
cortical and subcortical anatomical regions using the Freesurfer
software library Version 5.0 (http://surfer.nmr.mgh.harvard.edu/)
(Fischl, 2012) by following an atlas of 169 anatomical regions also
available with Freesurfer (Desikan et al., 2006). These anatomical
regions included superior temporal gyrus, middle temporal gyrus,
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