
Journal of Neuroscience Methods 236 (2014) 51–57

Contents lists available at ScienceDirect

Journal  of  Neuroscience  Methods

jo ur nal ho me  p age: www.elsev ier .com/ locate / jneumeth

Computational  Neuroscience

Structural  connectivity  based  whole  brain  modelling  in  epilepsy

Peter  Neal  Taylora,∗,  Marcus  Kaisera,b,  Justin  Dauwelsc

a School of Computing Science, Newcastle University, UK
b Institute of Neuroscience, Newcastle University, UK
c School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore

h  i g  h  l  i g  h  t  s

• Advances  in  neuroimaging  pipelines  now  allow  us to infer  subject-specific  large-scale  brain  networks.
• Sophisticated  computer  models  allow  the prediction  of brain  dynamics  based  on  these  networks.
• Here  we  review  the  use  of  neuroimaging  informed  computer  models  in  the  context  of  epilepsy.
• We  suggest  that  computational  models  can  be used  as  a tool  to predict  optimal  strategies  for  stimulation  and surgical  intervention  patient-specifically.
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a  b  s  t  r  a  c  t

Epilepsy  is  a neurological  condition  characterised  by the recurrence  of seizures.  During  seizures  multiple
brain  areas  can behave  abnormally.  Rather  than considering  each  abnormal  area  in isolation,  one  can
consider  them  as  an interconnected  functional  ‘network’.  Recently,  there  has  been  a shift  in  emphasis
to  consider  epilepsy  as  a  disorder  involving  more  widespread  functional  brain  networks  than  perhaps
was  previously  thought.  The  basis  for these  functional  networks  is proposed  to be  the  static  structural
brain  network  established  through  the  connectivity  of  the  white  matter.  Additionally,  it has  also  been
argued  that  time  varying  aspects  of epilepsy  are of crucial  importance  and as  such computational  models
of  these  dynamical  properties  have  recently  advanced.  We  describe  how  dynamic  computer  models  can
be combined  with  static  human  in vivo  connectivity  obtained  through  diffusion  weighted  magnetic  reso-
nance  imaging.  We predict  that  in  future  the  use  of  these  two methods  in concert  will  lead  to  predictions
for  optimal  surgery  and  brain  stimulation  sites  for epilepsy  and  other  neurological  disorders.

©  2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

It has long been known that alterations to brain structures
can be strongly associated with abnormal brain function such
as epileptic seizures. What is less well understood however

∗ Corresponding author. Tel.: +44 1912087975.
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is the relationship of why  this association exists and how we
can use it to aid treatment. Advances in diffusion weighted
magnetic resonance imaging (DW-MRI) allow us to now infer
subject specific brain connectivity in vivo. Meanwhile, advances
in computer modelling allow us to make predictions of brain
function which are constrained by the aforementioned con-
nectivity. In this article we review existing studies which use
human brain connectivity to constrain a model of predictive
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value. We  suggest likely research avenues in the context of
epilepsy.

Using DW-MRI it has been shown that in patients with epilepsy
there are differences in anatomical brain connectivity when com-
pared to nonepileptic controls (Bonilha et al., 2012). One key
assumption of these measured brain networks is that large scale
anatomical brain connections do not change rapidly over time (on
the order of seconds/milliseconds), but rather over the course of
several years (Lim et al., 2013).

Although large scale anatomical brain connectivity is not
thought to vary much at rapid timescales of around a second, neural
activity certainly does. Electroencephalographic (EEG) recordings
of brain activity show oscillations which are clearly associated with
certain normal and abnormal brain states. For example, delta oscil-
lations of around 2 Hz are present during sleep and 3 Hz spike-wave
oscillations are detectable during many types of epileptic seizures.
Another way of measuring brain activity, which varies on the order
of seconds, is to use functional magnetic resonance imaging (fMRI).
fMRI measures the blood oxygenation level in the brain which is
thought to be related, to some extent, to neural activity (Logothetis
et al., 2001). This has also been shown to be associated with specific
types of human activity such as eyes closed resting state (Fox et al.,
2005) and epileptic seizures (Moeller et al., 2010).

At rapid timescales, sophisticated nonlinear computational
models of oscillatory brain activity (as seen in healthy subjects
as well as patients) have been developed (Lytton, 2008). These
models have suggested possible mechanisms to explain transi-
tions to seizure states, through the incorporation of macroscopic
level excitatory & inhibitory variables (Baier et al., 2012). Variables
and parameters are the key components of a computational model
and a notable advance is our ability to now use subject-specific
connectivity data to constrain model parameters. An important dis-
tinction should be made between parameters (which do not change
– or change very slowly, e.g. over hours, days, years) and variables
(which vary rapidly, e.g. seconds, milliseconds) in these models.

Computational models enable the prediction of time varying
activity, given sets of parameters, and are an ideal tool to investigate
how brain connectivity relates to brain dynamics (and ultimately
brain function) (Deco et al., 2013; Honey et al., 2010, 2007). How-
ever, several questions remain to be addressed in the context of
epilepsy. Specifically, how do the changes in epileptic patient’s
connectivity relate to their likelihood of transiting to seizure oscil-
lations? How does surgical outcome depend on the network? What
is the best spatial location to place a stimulating electrode for
seizure abatement? The answers to these questions are likely not
a direct consequence of the connectivity parameters, but rather
a combination of connectivity and inherent nonlinear brain pro-
cesses. In this article we review the current state of DW-MRI
informed models of human brain activity and suggest how they
could be used to make better predictions for epilepsy treatment.
We limit ourselves to macroscopic level connectivity as obtained
by DW-MRI due to the high availability of data at this spatial scale
and the difficulties in obtaining data with more detailed higher res-
olutions in vivo. Nonetheless, it should be noted that many of the
principles described here can be applied at the meso- and micro-
scopic scale.

2. Structural brain connectivity alterations in epilepsy

If epilepsy is to be considered a disorder of abnormal brain net-
work(s) then one should carefully consider what constitutes the
network components, specifically the nodes and the edges which
connect them (Kramer and Cash, 2012; Richardson, 2012; Engel
et al., 2013). Brain networks can be observed at the local level
of connections between neurons or populations of neurons – the

micro-connectome – or at the level of connections between brain
regions – the macro-connectome (Van Essen, 2013). However, bio-
logical mechanisms at the macro-level are less well understood
(Stanley et al., 2013).

One technique for network definition is by utilising magnetic
resonance imaging (MRI) and Diffusion-Weighted MRI  (DW-MRI)
data. In this technique the static image of the subject’s brain is
divided into parcellated regions of interest (ROI) corresponding to a
predefined atlas. Several pre-defined atlases exist at various levels
of detail. For example the AAL atlas (Tzourio-Mazoyer et al., 2002)
has 90 regions of interest, whilst the atlas described by Hagmann
et al. (2008) has multiple levels of resolution including up to around
1000 ROI. An example parcellation scheme is shown in the upper
left of Fig. 2 (adapted from Daducci et al. (2012)). Regions of interest
assigned using the atlas matching algorithm are typically defined
as the ‘nodes’ in the network.

To assess structural connections between each ROI, a tractog-
raphy algorithm infers macroscopic tracts which pass through
multiple continuous voxels (Parker et al., 2003; Wedeen et al.,
2008). When the parcellated cortical and subcortical structures
are combined with the inferred tracts one can infer the presence
of a connection between two  ROIs if there is a tract begin-
ning/terminating in the voxels contained in the corresponding ROI.
This approach gives a macroscopic large-scale whole brain network
– a ‘connectome’ – which is essentially a static, time invariant rep-
resentation of the subject’s brain connectivity. A popular example
of this workflow/pipeline is summarised by Daducci et al. (2012).
The output of this workflow is a subject-specific brain connectivity
network. In more formal terms, this network can be defined as a
graph represented by an adjacency matrix, whereby nodes (ROI)
are represented in each axis and the connection between them is
specified as entries in the matrix. Since the ordering of the nodes is
the same on both axes, self-connections are therefore represented
on the diagonal. An example abstract network to demonstrate this
is shown in Fig. 1. Notice how the matrix is symmetric since the
connections in the graph are undirected. This is also the case when
inferring connections using DW-MRI since it is not possible to
infer the directionality of the tracts and is therefore a drawback of
this approach (Jbabdi and Johansen-Berg, 2011) in contrast to, for
example, tract tracing through injected dyes in post mortem studies
(Felleman and Van Essen, 1991; Stephan et al., 2001).

Various studies have applied graph theory analysis to these
brain networks, both in controls and in patients with epilepsy
(Chiang and Haneef, 2014). Graph theory is a formal way of inves-
tigating networks (graphs) and can elucidate various properties of
the graph. For example, the clustering coefficient measures how
well neighbours of a node, that means nodes that are directly con-
nected to that node, are connected to each other (Rubinov and
Sporns, 2010; Kaiser, 2011). Furthermore, a small-world network
(Watts and Strogatz, 1998) can be defined having a higher clus-
tering coefficient but a comparable all-pairs shortest path length

Fig. 1. Example of a network (left) and its corresponding adjacency matrix
(right). The network is undirected, meaning all connections are bidirectional and
unweighted, meaning connections are indicated in binary form representing the
presence or absence of a connection.
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