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• Our  segmentation  plan  framework  adapts  to  any  segmentation  problem  and  dataset.
• A  novel  definition  of  deformable  organisms  that  work  to segment  an  image.
• Example  using  a plan  for  brain  segmentation  or  skull-stripping.
• Compared  with  manual  segmentations  and methods  specific  for skull-stripping.
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a  b  s  t  r  a  c  t

Background:  Segmentation  methods  for medical  images  may  not  generalize  well  to  new  data  sets  or  new
tasks, hampering  their  utility.  We  attempt  to remedy  these  issues  using  deformable  organisms  to  create
an  easily  customizable  segmentation  plan.  We  validate  our  framework  by  creating  a  plan  to locate  the
brain  in  3D  magnetic  resonance  images  of  the head  (skull-stripping).
New  method:  Our  method  borrows  ideas  from  artificial  life  to govern  a set  of deformable  models.  We
use  control  processes  such  as sensing,  proactive  planning,  reactive  behavior,  and knowledge  represen-
tation  to  segment  an  image.  The  image  may  have  landmarks  and  features  specific  to  that  dataset;  these
may  be  easily  incorporated  into  the plan.  In  addition,  we  use a  machine  learning  method  to  make  our
segmentation  more  accurate.
Results:  Our  method  had the  least  Hausdorff  distance  error,  but  included  slightly  less  brain  voxels  (false
negatives).  It  also  had  the lowest  false  positive  error  and  performed  on  par to skull-stripping  specific
method  on  other  metrics.
Comparison  with  existing  method(s):  We  tested  our  method  on 838  T1-weighted  images,  evaluating  results
using distance  and  overlap  error  metrics  based  on  expert  gold  standard  segmentations.  We  evaluated
the  results  before  and  after  the  learning  step  to quantify  its  benefit;  we  also  compare  our results  to  three
other widely  used  methods:  BSE,  BET,  and  the  Hybrid  Watershed  algorithm.
Conclusions:  Our  framework  captures  diverse  categories  of  information  needed  for  brain  segmentation
and  will  provide  a  foundation  for tackling  a wealth  of segmentation  problems.

© 2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Deformable organisms label objects in images by integrating
high level control mechanisms into a segmentation plan. More
recent implementations have incorporated a variety of processes
such as sensing, knowledge representation, reactive behavior,
and proactive planning; a set of organisms may also coopera-
tively segment an image. Deformable organisms were introduced
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into medical imaging by McInerney et al. (2002) who combined
ideas from artificial life (Steels, 1993) and deformable models
(McInerney and Terzopoulos, 1996; Terzopoulos et al., 1987). Since
their introduction, deformable organisms have been used for limb
delineation (McIntosh et al., 2007), and segmentation of the spinal
cord (McIntosh and Hamarneh, 2006b), vasculature (McIntosh and
Hamarneh, 2006c), and corpus callosum in the brain (Hamarneh
and McIntosh, 2005). McIntosh and Hamarneh (2006a) created a
deformable organisms framework using the Insight Toolkit (ITK)
(Ibanez et al., 2005), but we did not use it here, as we  devel-
oped our own representation along with a set of behaviors to
govern its development. Our deformable organisms attempt to
segment the brain by incorporating high-level knowledge and
expectations regarding image data by leveraging the interaction
of multiple deformable models that cooperatively use low-level
image processing and computer vision techniques for brain seg-
mentation. In contrast to several brain segmentation methods
that work with low-level image processing and computer vision
techniques, our deformable organisms can incorporate high-level
knowledge and expectations regarding image data.

Our contribution in the method presented here is to specify in
detail the way organisms should be initialized, how they can be
used to interpret an image, adapt physically in the image space,
and follow a unique high-level goal-oriented plan specified by a
researcher. In addition to our definition of deformable organisms
we explored using a machine learning step to deal with the discrep-
ancies that may  arise from a high-level segmentation plan and the
fine boundaries of functional regions in the brain. We  chose a wrap-
per (Wang et al., 2011) based on the Adaboost algorithm that learns
the errors made by our algorithm from training data. We  evalu-
ated and compared our organisms based on their performance on
one specific neuroimaging segmentation problem (skull-stripping),
which we detail here. Even so, they offer a rich toolbox to construct
a plan for any type of segmentation. The ability to adapt this toolkit
to different segmentation problems could make it ideal for a wide
range of standard neuroimaging tasks.

In our experiments, we evaluate our deformable organisms
framework by segmenting the entire brain boundary from non-
brain regions in whole head images. Segmenting brain from
non-brain tissues (such as the eyes, skull, scalp, and neck) in
magnetic resonance imaging (MRI) images of the head is a vital
pre-processing step for many types of image analysis tasks. Accu-
rate masks of the brain are helpful for longitudinal studies (Resnick
et al., 2003), for multi-subject analyses of brain structure and func-
tion (Thompson et al., 2003), and as a pre-processing step prior to
cortical surface modeling (Thompson et al., 2004), surgical planning
(Gering et al., 2001), and brain registration (Woods et al., 1999).

The process of segmenting brain versus non-brain tissue in
MRI  is commonly referred to as “skull-stripping” (although, strictly
speaking, the skull generates almost no signal on T1-weighted
MRI  and the scalp and meninges are the main tissues removed).
This has traditionally been done manually by trained experts, or
by automated methods that are subsequently corrected by hand.
Manually-created masks may  also be used as gold standard delin-
eations to validate performance of skull-stripping methods based
on different principles. Many approaches have been developed for
this task, but time consuming manual clean-up of these generated
masks is almost always required. Many published methods do not
perform well on all datasets, making improvements on existing
methods an active area of research.

There are a variety of existing skull-stripping methods. The
brain extraction tool (BET) (Smith, 2002) evolves a deformable
model to find the boundary of the brain. It provides a robust way
to find the boundary in unclear regions but does not incorporate
prior knowledge of the brain’s shape. The brain surface extrac-
tor (BSE) (Shattuck and Leahy, 2002) uses edge detection and

morphological operations to find the brain/non-brain boundary.
BSE quickly extracts the brain from an image but may include extra
material in the mask, as it sometimes fails to remove connections
between the brain and surrounding tissue. The Hybrid Watershed
Algorithm (HWA) (Segonne et al., 2004) uses the watershed algo-
rithm to find the brain region, then fits a deformable model to
the region, and finally deforms it based on a statistical atlas and
geometric constraints. These methods have also been analyzed in
(Boesen et al., 2004). We  chose these methods as they are among the
most widely used and are part of larger neuroimaging toolkits. Our
goal was  to assess whether a deformable organism framework and
accompanying plan of segmentation could result in delineations at
least comparable with existing problem specific algorithms.

We present a detailed definition of deformable organisms for
brain segmentation and incorporate them into a segmentation plan
that governs a collection of organisms to segment different parts
of the head and brain. The organisms evolve dynamically in the
images. They cooperatively compute an accurate and robust seg-
mentation of the brain. We  then use a learning method to analyze
the errors in our method, and incorporate information on it into
the models. We  evaluate how effective this additional error correc-
tion step is, in improving our segmentation. We  test our method
with 630 T1-weighted MRI  images from healthy young adults along
with another dataset of 208 older adults with Alzheimer’s disease.
We compare our approach to three widely used methods and we
validate our results using distance, overlap, and error metrics. The
current study builds on our preliminary work that used simpler
deformable models and had less extensive experiments (Prasad
et al., 2011a,b).

2. Methods

Our deformable organisms method aims to segment and model
the brain in T1-weighted MRI  images of the head. We  describe our
deformable organism definitions for any type of general segmen-
tation of the brain, a way to learn and correct errors in our method,
validation metrics to compare our results to the gold standard and
to other widely-used methods, and in our experiments we propose
and evaluate a plan for skull-stripping.

2.1. Deformable organisms

Deformable organisms are organized in five different layers that
combine control mechanisms and different representations to seg-
ment an image. We  adapt this general approach for segmenting the
brain.

2.1.1. Geometry and physics
We represent each organism as a 3D triangulated mesh. These

meshes are initialized on a standard brain template image. Our
template was  selected from the 40 images in the LONI Proba-
bilistic Brain Atlas (LPBA40) (Shattuck et al., 2008), which have
corresponding manual segmentations for 56 structures, and have
manual delineations of the brain boundary. In the image we
selected from this set, the voxels lying in each of our regions of
interest are labeled. We  fit our organisms to these labels to create
a mesh using a marching cubes method (Lorensen and Cline, 1987)
that goes through the image. The mesh is made up of polygons rep-
resenting the border of the regions, which are then fused together.
These meshes deform to fit the 3D region that their correspond-
ing organism is modeling. This iterative process moves each of the
mesh’s vertices along its normal direction with respect to the mesh
surface. The surface is smoothed at every iteration using curvature
weighted smoothing (Desbrun et al., 1999; Ohtake et al., 2002). This
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