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h  i g  h  l  i  g  h  t  s

• We  evaluate  the performance  of  EC–PC  spike  detection  method  under  different  firing  rates,  SNRs.
• Both  simulated  and  experimental  data  are  used  in  the  performance  evaluations.
• Results  show  that the EC–PC  detection  method  is  the most  robust  in comparison  with  some  popular  detectors.
• We  show  that  the  detection  Precision  can  be  derived  without  requiring  additional  user  input  parameters.
• We  also  report  a hardware  implementation  based  on  a  0.13  �m CMOS  chip.

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 18 November 2013
Received in revised form 9 July 2014
Accepted 10 July 2014
Available online 1 August 2014

Keywords:
Spike detection
Precision of detection
EC–PC
ASIC implementation

a  b  s  t  r  a  c  t

Background:  Online  spike  detection  is  an  important  step  to  compress  neural  data  and  perform  real-time
neural  information  decoding.  An  unsupervised,  automatic,  yet  robust  signal  processing  is  strongly  desired,
thus it  can  support  a wide  range  of  applications.  We  have  developed  a  novel  spike  detection  algorithm
called  “exponential  component–polynomial  component”  (EC–PC)  spike  detection.
New method:  We  firstly  evaluate  the  robustness  of  the  EC–PC  spike  detector  under  different  firing  rates  and
SNRs.  Secondly,  we  show  that  the detection  Precision  can  be  quantitatively  derived  without  requiring
additional  user  input  parameters.  We  have  realized  the  algorithm  (including  training)  into  a  0.13  �m
CMOS  chip,  where  an  unsupervised,  nonparametric  operation  has  been  demonstrated.
Results:  Both  simulated  data  and  real data  are  used  to evaluate  the  method  under  different  firing  rates
(FRs), SNRs.  The  results  show  that the  EC–PC  spike  detector  is the  most  robust  in comparison  with  some
popular  detectors.  Moreover,  the EC–PC  detector  can  track  changes  in the  background  noise  due to  the
ability  to  re-estimate  the  neural  data distribution.
Comparison  with  existing  methods:  Both  real  and  synthesized  data  have  been  used  for  testing  the  proposed
algorithm  in  comparison  with  other  methods,  including  the  absolute  thresholding  detector  (AT),  median
absolute  deviation  detector  (MAD),  nonlinear  energy  operator  detector  (NEO),  and  continuous  wavelet
detector  (CWD).  Comparative  testing  results  reveals  that  the EP–PC  detection  algorithm  performs  better
than  the  other  algorithms  regardless  of recording  conditions.
Conclusion:  The  EC–PC  spike  detector  can  be considered  as an  unsupervised  and  robust  online  spike
detection.  It is  also  suitable  for hardware  implementation.

© 2014  Elsevier  B.V.  All  rights  reserved.
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1. Introduction

Neurons in the brain form closely connected networks and use
action potentials to transfer information (Gerstner et al., 1997;
Buzsaki, 2006). To study information generation, representation
and propagation, action potentials need to be extracted from the
raw data, a process known as spike detection (Lewicki, 1998).
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So far different spike detection algorithms have been reported
in the literature (Chandra and Optican, 1997; Harrison, 2003;
Gibson et al., 2009; Quiroga et al., 2004; Kim and Kim, 2000, 2003;
Mukhopadhyay and Ray, 1998; Choi et al., 2006; Semmaoui et al.,
2012; Gosselin and Sawan, 2009; Maragos et al., 1993; Goodall
and Horch, 1992; Mtetwa and Smith, 2006; Kaneko et al., 1999;
Gozani and Miller, 1994; Kim and McNames, 2007; Harris et al.,
2000; Henze et al., 2000; Zouridakis and Tam, 1997; Nenadic and
Burdick, 2005). In the methods that rely on amplitude thresholding
(Chandra and Optican, 1997; Harrison, 2003), spikes are detected
when neural data exceed a pre-determined threshold, usually 3–6
times the root mean squared (RMS) value of the data. Because of the
computational simplicity, the amplitude thresholding detection is
suitable for on-line implementation (Gibson et al., 2009; Quiroga
et al., 2004). However, its performance is not reliable at moderate
or low SNRs conditions. The other candidates for on-line imple-
mentation are the nonlinear energy operator (NEO) based methods
(Kim and Kim, 2000; Mukhopadhyay and Ray, 1998; Choi et al.,
2006; Semmaoui et al., 2012; Gosselin and Sawan, 2009). In these
methods, both instantaneous amplitude and frequency are taken
into account to improve the detection accuracy. However, these
methods provide satisfactory results only when the background
noise can be described according to the undamped oscillator model
(Maragos et al., 1993), which may  not be valid in many situations.
Another popular spike detection method is template matching,
where spikes are detected according to the similarity between neu-
ral data and candidate spike template (Goodall and Horch, 1992;
Mtetwa and Smith, 2006; Kaneko et al., 1999; Gozani and Miller,
1994; Kim and McNames, 2007). It is effective given appropriately
trained templates and stable neural signals; however, neural spikes
may  have both short-term and long-term variations that can cause
false detection (Harris et al., 2000; Henze et al., 2000). In addi-
tion, cross-bin similarity measure and globally searching for the
best match can be slow (Kim and McNames, 2007). Wavelet-based
detectors are also used in spike detection (Kim and Kim, 2003;
Zouridakis and Tam, 1997; Nenadic and Burdick, 2005). Similar
to template matching, they require well-shaped mother wavelets
to form suboptimal matched filters (Shalchyan et al., 2012). This
approach requires the user to specify threshold at each individ-
ual layer followed by a joint decision making mechanism. Also
the algorithm requires a considerable amount of computation for
implementation (Nenadic and Burdick, 2005).

In our previous work (Yang et al., 2012), a new EC–PC framework
for in vivo spike detection has been proposed. It is shown that neu-
ral data are a combination of two components including noise and
detectable spikes. After Hilbert transform, the noise forms an expo-
nential component (EC) and spikes form a polynomial component
(PC). By using online trained EC and PC from raw data, the detec-
tor can output a probability map  for spike detection. In this paper,
we briefly introduce the EC–PC detection method, and evaluate its
performance under different conditions (firing rates, SNRs), and in
comparison with other methods. Both simulated and experimen-
tal data are used in the performance evaluations, showing that the
EC–PC detection method is the most robust in comparison with
some popular detectors.

However, the main contribution of this paper is to show that
regardless of the recording condition, the numeric value of the
probability threshold of the EC–PC detector is approximately equal
to the expectation of detection Precision. In other words, we  prove
theoretically that the detection Precision can be quantitatively
derived without requiring additional user input parameters. This
new feature allows directly mapping a detection threshold to a
point on the probability of false alarm (PFA) curve. As a result, the
user can pick operation points from the receiver operating charac-
teristic (ROC) curve, and the algorithm will automatically adjust the
threshold accordingly. We  also report a hardware implementation

based on a 0.13 �m Complementary Metal Oxide Semiconductor
(CMOS) chip, where an unsupervised, nonparametric operation
has been demonstrated. The chip takes 2.5 s for training from the
raw data (not requiring any user specified parameter), where once
trained a real-time performance has been obtained.

The rest of this paper is organized as follows. Section 2 gives the
algorithm formulation. Section 3 describes data preparations and
testing protocols. Experimental results are presented in Section 4.
Algorithm implementation in ASIC and testing results are summa-
rized in Section 5. Discussions and concluding remarks are given in
Section 6.

2. Robustness of the EC–PC detection algorithm

2.1. Algorithm overview

Extracellularly recorded neural data consist of neural spikes
(300 Hz–5 kHz), field potentials (<250 Hz, Belitski et al., 2008), and
noise. After applying highpass filtering on the raw neural data at
300 Hz, the filtered signal contains the following components

1. Activities of neurons within the recording radius, where spike
power is much stronger than the noise power.

2. Activities of neurons in an extended radius (up to a few hundred
�m), where spike power is comparable to the noise power.

3. Noise produced by different sources including unresolved synap-
tic activities, firing of distant neurons, and recording hardware.

To examine the recorded neural data distribution, let denote by
V(t) and HV(t) the neural data sequence and its Hilbert transform
respectively.1 They together form a strong analytic signal as

Vst(t) = V(t) + jHV(t) = V(t) + j
1
�

ˇ

∫ ∞
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t − �

d� (1)

where j2 = −1 and  ̌ in front of the integral denotes the Cauchy prin-
cipal value. The instantaneous power of the analytic signal Vst(t), is
then given by

Z(t) = |Vst(t)|2 (2)

It is shown in Yang et al. (2012) that for recordings with less visually
detectable spikes, the probability density function of Z(t) (denoted
by f(Z)) is an exponential function as

f (Z) ≈ fn(Z) ≈ 1
2�2

e−(Z/2�2), Z ≥ 0 (3)

where fn(Z) denotes the probability density function of noise term
and � is the data standard deviation. For moderate and high SNR
recordings, the tale of f(Z) is mainly contributed from spikes and
follows a polynomial function as (see Appendix A for more details)

f (Z) ≈ fd(Z) ≈ Z−((3+2x)/2x) (4)

where x is real number within 1–2. Both expressions in (3) and (4)
together suggest that f(Z) is a combination of an exponential com-
ponent (EC, e−�1Z, generated by noise) and a polynomial component
(PC, Z−�2 , generated by spikes), as illustrated in Fig. 1.

Now, let assume that f̃n(Z) and f̃d(Z) are the exponential
component and the polynomial component, trained in real-time
respectively. Then, the spiking probability,  i.e. the probability that

1 The Hilbert transform is used for two reasons. First, extracellular spike could
have significant variation in shape. In comparison with data sequence, the cor-
responding analytic signal has less variation in shape and only require a single
threshold for different shaped spikes. Second, as to be derived here, background
noise has a simple representation in Hilbert space.
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