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h  i  g  h  l  i g  h  t  s

• Neural  mass  model  was  used  to  compare  performance  between  gPDC  and  PCMI algorithms.
• PCMI  index  is  more  close  to a theoretical  value  in  bidirectional  mode  than  gPDCs.
• gPDC  is more  sensitive  to  the  alteration  of  coupling  strength  than  that  of  PCMI.
• PCMI  performance  is better  than  gPDC  for  measuring  levels  of neural  connectivity.
• gPDC  is more  likely  to  distinguish  the  differences  of coupling  than  that  of  PCMI.
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a  b  s  t  r  a  c  t

Background:  General  partial  directed  coherence  (gPDC)  and  permutation  conditional  mutual  information
(PCMI)  have  been  widely  used  to analyze  neural  activities.  These  two  algorithms  are  representative  of
linear and  nonlinear  methods,  respectively.  However,  there  is little  known  about  the  difference  between
their  performances  in  measurements  of neural  information  flow  (NIF).
New method:  Comparison  of  these  two approaches  was  effectively  performed  based  on the  neural  mass
model  (NMM)  and  real  local  field  potentials.
Results:  The  results  showed  that  the sensitivity  of PCMI  was  more  robust  than  that  of  gPDC.  The cou-
pling  strengths  calculated  by  PCMI  were closer  to theoretical  values  in the  bidirectional  mode  of  NMM.
Furthermore,  there  was  a  small  Coefficient  of  Variance  (C.V.)  for the  PCMI  results.  The  gPDC  was more
sensitive  to alterations  in  the  directionality  index  or the  coupling  strength  of  NMM;  the  gPDC  method
was  more  likely  to detect  a difference  between  two  distinct  types  of  coupling  strengths  compared  to that
of  PCMI,  and  gPDC  performed  well  in  the identification  of the  coupling  strength  in  the unidirectional
mode.
Comparison  to existing  method(s):  A comparison  between  gPDC  and  PCMI  was  performed  and  the  advan-
tages  of  the  approaches  are discussed.
Conclusions:  The  performance  of  the  PCMI is better  than  that of  gPDC  in  measuring  the  characteristics
of  connectivity  between  neural  populations.  However,  gPDC  is  recommended  to  distinguish  the  differ-
ences  in  connectivity  between  two states  in  the  same  pathway  or to detect  the  coupling  strength  of the
unidirectional  mode,  such  as  the  hippocampal  CA3–CA1  pathway.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A number of neuroscience studies have focused on how the
brain understands the world. However, an important issue remains
how widely distributed brain areas communicate with each other,
even though the anatomical structure of the brain has been clearly
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identified. It is hard to demonstrate how information flows along
anatomical brain pathways when animals perceive their environ-
ments, learn about their world and behave in a particular way.
Similarly, it is almost impossible to understand how informa-
tion transfers from one region to another in our brain when we
think, because the brain anatomical structure is a static structure
(Smith et al., 2006). Accordingly, a dynamic indicator is required
– so-called neural information flow (NIF) – rather than a static
one, to represent the coupling of neurons or coupling of neural
assemblies in a neural network (Smith et al., 2006). Consequently,
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mathematical or dynamic approaches, by which the directionality
of neural information flow (NIF) can be determined, are necessary.

Recently, several algorithms have been developed to determine
the directionality of NIF. In general, these can be divided into
two types; nonlinear and linear approaches. Generalized partial
directed coherence (gPDC) is a representative of linear algorithms,
which has been widely applied to the analysis of neural signals in
many cases: MRI  signals in the normal rat sensorimotor system
(Shim et al., 2013), the local field potential of rats in a vascular
dementia rat model (Xu et al., 2012), the EEG of patients with
Parkinson’s disease (Tropini et al., 2009) and to functional con-
nectivity between cortices (Taxidis et al., 2010). The algorithm of
gPDC was developed in accordance with the definition of Granger
causality, and its index was  evaluated by using multivariate autore-
gressive models. Alternatively, conditional mutual information
(CMI), which is a typical nonlinear method often employed to detect
the strength of coupling (Jin et al., 2011; Zhang et al., 2011), was
developed based on information theory. As an improved algorithm
of CMI, permutation conditional mutual information (PCMI) was
proposed to perform causal connectivity measures between neu-
ronal populations (Li and Ouyang, 2010). It has been reported that
PCMI is superior to both CMI  and Granger causality approaches for
identifying the coupling direction between neural populations (Li
and Ouyang, 2010). However, little is known about the limitations
and differences between gPDC and PCMI algorithms.

It is well known that the neural mass model (NMM) has been
widely used to simulate neural activities (David et al., 2004;
Zavaglia et al., 2008). The NMM  is a so-called macroscopic model,
whose variables represent the average behavior of neural popu-
lations (David and Friston, 2003). In the present study, the NMM
model was employed to generate simulation data. The model was
applied to several aspects of imitating the activity of neuronal
populations, e.g., olfactory responses (Freeman, 1987), focal atten-
tion (Suffczynski et al., 2001) and to evoke activity (Trong et al.,
2012), and epilepsy (Goodfellow et al., 2012). The signal validated
by the neural mass model could directly be applied to analyze
real data obtained from animals or humans for physiological inter-
pretation (Zavaglia et al., 2006). Accordingly, the NMM  model
was employed to compare the performance between these two
approaches. In addition, two different modes of the connection
were carefully considered: unidirectional and bidirectional modes.

The present study aimed to evaluate differences in the rela-
tive efficacy and characteristics between these two  algorithms, to
measure better the directionality of NIF. This was performed by
generating data for local field potentials from two connective chan-
nels, between which the coupling strength and direction could be
varied by alternating parameters of the NMM  model. This allowed
us to assess the performance of different interactions using oscilla-
tory signals. In this study, the NMM  and the two algorithms were
introduced, and the NMM  was used to generate simulated data.
The sensitivities of these two algorithms were evaluated and com-
pared, to detect the connectivity in different modes. Finally, the real
experimental data for animals was obtained and the analysis was
performed.

2. Materials and methods

2.1. Mathematical model

The NMM  is a macroscopic model based on several simplify-
ing assumptions. However, it can still simulate general features
of macroscopic brain signals (David and Friston, 2003). One main
assumption is the so-called mean field approximation, which
expresses neural activities via lumped state variables. These vari-
ables represent the behavior of millions of interacting neurons. To

date, the simulating signals validated by the neural mass model
have been directly applied to the analysis of real data obtained from
either animals or humans for physiological interpretation (Zavaglia
et al., 2006).

Generally, there are two operations in the NMM  (David et al.,
2004). The first is a sigmoid function to transfer the electrical sig-
nals to the mean firing rate. The second is a group of conversion
functions with two  conditions, including excitatory and inhibitory
functions. Using the conversion functions, the mean postsynaptic
response can be assessed by a linear convolution of the incoming
spike rate. The sigmoid and conversion functions are as follows:
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(for inhibitory conversion function)

In the present study, the parameters were defined to be the same
as in the model used in a previous study (David et al., 2004).

The NMM  model is presented (Fig. 1A) and shows that Chan-
nels 1 and 2 represent the two regions of the brain. A time delay is
symbolized by ı, which represents the transmission time between
neuronal populations. The coupling strength between two chan-
nels is defined by K12(K21), which represents the connectivity of
two cortical regions. Here, Pi, i = 1, 2 are stochastic variables that
indicate information from the rest of the brain (Sen Bhattacharya
et al., 2011). 〈p1 〉 = 〈 p2 〉 =220, std(p1) = std(p2) = 22. The structure of
Channel 1(2) is shown in Fig. 1B, in which Hj

e,i
, j = 1, 2 measure the

two different frequencies, whereas the relative parameters and the
details of the model can be seen in David et al. (2004).

2.2. Acquisition of simulated data

An experiment was performed to detect the sensitivity of the
two approaches. To evaluate this, both K12 and K21 were varied
from 0 to 50 with a step of 2. For simplicity, we  only focused on
the sensitivity of K12 for the following reasons. Firstly, the function
of K12 and K21 was symmetrical as shown in Fig. 1; accordingly,
there was  only one direction in which the investigation could be
performed. Secondly, in each simulation experiment, the value of
K21 was fixed, while K12 was varied from 0 to 50. Therefore, we  only
focused on the sensitivity of K12. In addition, the indices of these
approaches would be more accurate together with an increase in
K12. In other words, the coupling sensitivity of K12 would be bet-
ter with an increase in the K12 value. More details concerning the
coupling sensitivity are shown below.

The performance of two approaches with the changes in cou-
pling strength was further compared. Two  modes were employed
to distinguish the characteristics of the approaches and to compare
the performance between gPDC and PCMI algorithms. Firstly, a uni-
directional mode was used, in which the coupling strength K21 was
set to zero and the value of K12 ranged from 0 to 100 in steps of 5.
Secondly, to simulate a bidirectional mode, the coupling K21 was
set to 50, while the value of K12 was varied from 0 to 100 in steps
of 5. Moreover, 20 measurements were obtained for each value
of K12. The differential equations were solved numerically using a
fourth-fifty order Runge–Kutta algorithm. Initial conditions were
set to zero in all simulations with an integration step size of 1 ms
(sampling frequency: 1000 Hz). To avoid transient signals at the
beginning of the simulation, the first 5000 points were discarded.
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