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h  i  g  h  l  i  g  h  t  s

• In this  paper  we  have  considered  real,  clinical  scenarios  in magnetoencephalography.
• We  improve  the performance  of methods  such  as LCMV  by  using  clustering  techniques.
• The  basis  for  these  clustering  techniques  is the covariance  matrix  diagonalization.
• The  eigenspace/eigenvector  corresponding  to the  highest  eigenvalue  must  be used.
• The  projection  of  this  eigenspace  across  trials  provides  the  dissimilarity  matrix.
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a  b  s  t  r  a  c  t

Background:  Quite  often,  magnetoencephalography  (MEG)  measurements  are  contaminated  by  a  series
of artifacts  that degrade  the  quality  of the  various  source  localization  methods  applied  to  them.  In  par-
ticular,  eye  blinking,  minor  head  movement  and  related  activities  are  a constant  source  of  measurement
contamination.  In  order  to  solve  this  problem,  trial selection  and  rejection  is applied,  a task  that  is  usually
performed  manually.
New method:  The  present  work  shows  an automatic  trial selection  and  rejection  algorithm  based  on  clus-
tering  techniques.  These  techniques  employ  a measurement  of the  dissimilarity  of  the  items  belonging
to  a set.  This  measure,  based  on  the  projection  of the  eigenvector  corresponding  to  the  largest  eigenvalue
of  the  covariance  matrix,  is  provided  and  its rationale  is  explained.  Subsequently,  covariance  matrices
belonging  to  the  selected  cluster  are  averaged  and  used  in  the  well-known  Linearly  Constrained  Minimum
Variance  (LCMV)  Beamformer.
Results:  The  results  show  a marked  improvement  of the  specificity  of  the  localization  algorithm  compared
to  the application  of  the LCMV without  clustering.
Comparison  with  existing  method(s):  The  method  shows  a marked  reduction  in computational  cost  com-
pared  with  other  data  cleaning  procedure  widely  used:  Independent  Component  Analysis  (ICA).
Conclusions:  Thus,  we  propose  clustering  techniques  to be  used  in brain  localization  activity  algorithms.
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1. Introduction

Adaptive source localization techniques, such as LCMV, require
prior knowledge or estimation of the covariance matrix for all the
sensors for a specified time window. However, typical phenomena
that arise during the measurements, such as minor head move-
ments or eye blinking, can alter dramatically the underlying
measures, and its corresponding covariance matrices. This, in turn,
alters the estimation of the source position, a very important issue
for further applications of the technique as a diagnosis tool Mäkelä
et al. (2007).

The basis of the high resolution techniques considered in this
paper is to relate the electromagnetic activity from groups of
neurons (the emitter element) and the external recording of the
magnetic field using appropriate sensors disposed around the head
forming an array, such as shown in Fender (1987), Kavanagh et al.
(1987), Salu et al. (1990) and Mosher et al. (1992). Especially rel-
evant is the review of Ilmoniemi et al. (1985) in which several
theoretical and practical aspects of biomagnetism are treated in
depth.

The forward problem, i.e., the calculation of the value in any
point of the space of the magnetic field produced by charge or
current dipoles located in a defined position in the brain, has
been thoroughly addressed. The solution depends on the geom-
etry of the anatomical model and the electromagnetic properties
of the different tissues, as Fender (1987), Kavanagh et al. (1987),
Salu et al. (1990), Vrba and Robinson (1987) and Sarvas (1987)
demonstrated. The forward problem, in essence, involves the cal-
culation of the leadfield, that is, the measure obtained in the
sensors when the unit elementary current is placed in a given
place.

However, the main interest for the experimental and clinical
problem is in the opposite problem, denoted as the inverse prob-
lem, i.e., to estimate the location of the underlying current dipoles
from the measurements taken by an array of sensors which sample
the magnetic field.

We  shall focus on spatial filtering techniques, originated from
the field of array signal processing (Haykin, 1985), (Pillai, 1989),
that constitute a set of techniques well suited to provide a solution
for the inverse problem.

From a mathematical point of view, spatial filters are designed
as a constrained minimization problem. The specific formulation of
the mathematical constrained minimization problem determines
the type of the solution of the inverse problem.

For instance, the objective of the LCMV method Van Veen et al.
(1997) is to design the spatial filters that pass the signal com-
ing from specific locations, while attenuating signals from other
locations. Specifically, the method designs the spatial filter which
minimizes the output variance with the constraint of unit gain in
the desired location.

In this paper we focus on a practical case related to the study of
the auditory system. A MEG  registry is realized to several subjects
with previous informed consent. Acoustic stimuli could produce
activity in different brain regions including the frontal or even the
parietal lobe, depending on the subject expectancy and previous
experience. However, it is expected that the main activity or at least
the most stable activity should lie in the superior or mid  temporal
lobe where the primary auditory cortex is located. This localiza-
tion of the activity was used in this study as a guide to evaluate
the efficiency of the different source reconstruction methods as
explained in the Section 3. Nevertheless the characteristic of the
neural activity, namely its distribution over different spread areas,
must be taken into account when evaluating the results obtained
by different techniques.

We will use the LCMV implementation of Van Veen et al.
(1997) without leadfield normalization. We  think that this

implementation provides an adequate basis for the generalization
of the results here presented.

If there is an underlying phenomenon in a set of trials, given
the measurements are subject to additive zero-mean noise, one
possible way to treat this noise is via averaging the covariance
matrices corresponding to each trial, as described in (Van Veen
et al., 1997). If the noise is at least theoretically zero-mean, the
averaging process should cancel or at least attenuate it. However,
this averaging does not provide any protection against a possible
bimodality or multimodality of the quantities under measurement.
For instance, a subject under study could adequately receive a par-
ticular stimulus in a specific trial, while missing it altogether in
another trial. Thus, a technique is needed to cope with these and
similar problems that may  arise in the measurement process. In
this paper we  propose the use of clustering techniques for this
purpose.

The clustering techniques Pérez (2007) are multivariate tech-
niques whose main goal is to create a number of approximately
homogeneous groups among a given population. Another tech-
nique is the discriminant analysis Fisher (1936), which will not be
discussed here. The most widely clustering methods used have the
following features (Pérez, 2007):

• Hierarchical: it consists in a sequence of g + 1 clusters G0, . . .,  Gg,
in which G0 is the disjoint partition of all elements/individuals
and Gg is the partition set.

• Sequential:  the same algorithm is applied to each group in a recur-
sive manner.

• Agglomerative:  both individuals and groups are considered and
successively the two  most similar groups fuse until a classifica-
tion is reached.

• Exclusive: no element/individual can belong to two distinct
groups in the same stage.

All clustering techniques are based on the possibility of mea-
suring, somehow, how similar or different are the members of a
set. It must be noticed that in the general case, this dissimilar-
ity may  or may  not be a distance, let alone a Euclidean distance.
Sokal and Sneath (1963) classify the dissimilarities according to for
great groups, namely, distances, association coefficients, angular
coefficients and probabilistic similarity coefficients.

To realize the clustering, we  propose the measure of the dissimi-
larity of the subspaces spanned by the eigenvectors corresponding
to the largest eigenvalues of the covariance matrix of the trials.
At this point, it should be taken into account that the dissimilar-
ity measurement proposed should consider the fact that the same
vector subspace is spanned by the vectors u1 and −u1. Therefore,
the dissimilarity measurement should be almost zero when we
compare an eigenvector u1 with an eigenvector u2, which is very
near to u1 and should also be almost zero when we compare the
eigenvector u1 with an eigenvector u2, which is very near to −u1.

The rationale for this approach is based on the following
fact: if there is a main underlying phenomena (in our case
the auditory stimulus) that causes the activation of determined
channel sensors, it should be apparent from the low-rank approx-
imation using the largest eigenvalues and its corresponding
eigenvectors.

Finally, we present a set of tables and figures that illustrate
the better performance when the clustering techniques are used
against the case of using the whole set of covariance matrices
that correspond to the full set of available trials, and also against
the widely used Independent Component Analysis (ICA) method
(Makeig, 1993; Comon, 1994; Makeig et al., 1997; Hyvärinen
and Oja, 2000; Makeig et al., 2004). Additionally, it should be
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