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a  b  s  t  r  a  c  t

Automatic  identification  of  action  potentials  from  one  or more  extracellular  electrode  recordings  is  gen-
erally achieved  by  clustering  similar  segments  of  the measured  voltage  trace,  a  method  that  fails  (or
requires  substantial  human  intervention)  for spikes  whose  waveforms  overlap.  We  formulate  the  prob-
lem  in  terms  of  a simple  probabilistic  model,  and  develop  a unified  method  to identify  spike  waveforms
along  with  continuous-valued  estimates  of their  arrival  times,  even  in the  presence  of  overlap.  Specif-
ically,  we  make  use  of  a recent  algorithm  known  as  Continuous  Basis  Pursuit  for  solving  linear  inverse
problems  in  which  the  component  occurrences  are  sparse  and  are  at arbitrary  continuous-valued  times.
We demonstrate  significant  performance  improvements  over  current  state-of-the-art  clustering  meth-
ods for  four  simulated  and  two  real  data  sets  with  ground  truth,  each  of which  has  previously  been  used
as a benchmark  for  spike  sorting.  In addition,  performance  of  our  method  on  each  of  these  data  sets
surpasses  that  of  the  best  possible  clustering  method  (i.e.,  one  that  is  specifically  optimized  to  minimize
errors  on  each  data  set).  Finally,  the  algorithm  is  almost  completely  automated,  with  a computational
cost  that  scales  well  for multi-electrode  arrays.

© 2013 Elsevier B.V. All rights reserved.

The problem of detection, time-estimation, and cell classifi-
cation of neural action potentials from extracellular electrode
measurements is fundamental to experimental neuroscience. Elec-
trode(s) are embedded in neural tissue, and a voltage trace is
recorded as a function of time. When a neuron in the vicinity
of the electrode fires an action potential, a stereotypical wave-
form is superimposed onto the recorded voltage (Lewicki, 1998;
Sahani et al., 1997; Wehr et al., 1999). The shape of this wave-
form depends on the cell’s morphology and position, as well as
the filtering properties of the medium and the electrode(s). The
“spike sorting” problem consists of detecting the occurrence of
these individual waveforms and estimating their corresponding
times of occurrence.

Despite the ubiquity and succinct formulation of the prob-
lem, there is no de facto standard for spike sorting. Traditionally,
experimentalists manually position a single electrode and define
threshold triggers to identify the spikes of individual cells (Rodieck,
1967). However, this becomes substantially more difficult when
recording from several cells simultaneously, and is infeasible for
multi-electrode arrays. Computer-assisted solutions have con-
verged on a general methodology that we will refer to as
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“clustering,” consisting of three steps (Lewicki, 1998), illustrated in
Fig. 1: (1) detection of temporal segments of the voltage trace that
are likely to contain spikes, (2) estimation of a set of features for
each segment, and (3) classification of the segments according to
these features. A variety of methods exist for solving each step (e.g.,
(1) thresholding based on absolute value (Obeid and Wolf, 2004),
squared values (Rutishauser et al., 2006), Teager energy (Choi et al.,
2006), or other nonlinear operators (Rebrik et al., 1999), (2) features
such as peak-to-peak width/amplitude, projections onto princi-
pal components (Lewicki, 1998), or wavelet coefficients (Quiroga
et al., 2004; Kwon and Oweiss, 2011), and (3) classification methods
such as K-means (Lewicki, 1998), mixture models (Sahani, 1999;
Shoham et al., 2003), or superparamagnetic methods (Quiroga et al.,
2004)).

Although methods exist for solving each of the three steps in
isolation, it is unclear how to relate the sequential application of
these steps to the optimization of a single objective function, mak-
ing it difficult to state the assumptions and operating conditions
needed for success. Since each step does not take into account errors
introduced in previous steps, errors tend to accumulate. In addition,
many of these methods require human supervision (especially for
the classification step), which is not only costly, but generally inac-
curate (Harris et al., 2000) and highly variable (Wood et al., 2004).
The lack of a standard automated methodology makes it difficult to
compare results of scientific studies.
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Fig. 1. Schematic of 3-step procedure common to most current spike sorting methods. (a) Thresholding/windowing. Voltage peaks are detected (by comparison to a threshold),
and  their occurrence times are estimated. Temporal segments of the voltage trace that lie within a fixed-duration window around each peak (colored rectangles) are gathered.
(b)  Feature estimation. Segments are projected into a low-dimensional feature space. Here, we plot the projection of each segment onto the first two principal components
of  the full set of segments. (c) Classification. Segments are grouped within the feature space, typically using an automatic clustering method such as K-means or estimation
of  a Gaussian mixture model. Colored points correspond to the windowed segments in (a). Note that several of these are mis-classified because they contain a superposition
of  more than one spike. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Most importantly, the conventional three-step procedure
mishandles overlapping spikes. If two or more cells fire near-
synchronously, their respective waveforms will overlap in the
voltage trace, creating a shape that differs from either spike in iso-
lation (Lewicki, 1994; Sahani et al., 1997; Wehr et al., 1999; Pillow
et al., 2013). If the waveform shapes partially cancel, the initial
detection stage may  miss the spikes altogether. Even if the segment
is detected, its appearance will depend on the time delay between
the two spikes (Pillow et al., 2013). If this is significantly different
from that of either spike in isolation, it will be misidentified as a
fictitious third cell or discarded as an outlier, as illustrated in Fig. 1.
Even in the best case scenario, only one of the two spikes can be
correctly identified by a clustering method, and the other discarded.

Failure to resolve overlapping spikes can have serious con-
sequences: Basic measurements, such as mean firing rates and
cross-correlations, can be heavily biased due to spike sorting arti-
facts (Bar-Gad et al., 2001; Pazienti and Grn, 2006; Pillow et al.,
2013). Properly handling this bias is crucial when studying a neu-
ral population where there is a high level of synchronous activity or
when the study itself focuses on the correlation of firing patterns
(Mastronarde, 1989; Devries, 1999; Schnitzer and Meister, 2003;
Shlens et al., 2008; Pillow et al., 2008). Such studies are more fre-
quent with the advent of multi-electrode array recordings, which
allow the simultaneous recording of large populations of neurons
(Meister et al., 1994; Gerstein and Clark, 1964; Brown et al., 2004;
Pillow et al., 2008; Shlens et al., 2009).

There have been several proposed methods to augment the clus-
tering approach to account for overlapping spikes (Atiya, 1992;
Lewicki, 1994; Segev et al., 2004; Zhang et al., 2004; Vargas-Irwin
and Donoghue, 2007; Pillow et al., 2008; Chen et al., 2011; Prentice
et al., 2011; Pillow et al., 2013). However, these methods gener-
ally rely on brute-force examination of all combinations of spike
waveforms at all time separations (impractical for simultaneous
recordings of many cells), or “greedy” algorithms that iteratively
subtract the waveform of the best-fitting cell until the residual
amplitude is within the range expected for noise. A notable excep-
tion is the family of ICA-based spike sorting methods (Takahashi
et al., 2003; Takahashi and Sakurai, 2005; Franke et al., 2009), which
bear some resemblance to our approach, but have not been devel-
oped or implemented in the context of a unified probabilistic model
for the voltage measurements, and have not been extensively tested
and compared to traditional clustering methods.

In this paper, we present a method for estimation of the most
probable spike patterns given the observed voltage trace, which
is assumed to be a noisy linear superposition of spike waveforms
shifted to their respective spike times, corrupted by additive noise.

We  use a recently developed method in sparse signal decom-
position, known as Continuous Basis Pursuit (Ekanadham et al.,
2011a), as the basis for an accurate and efficient approximation
of the solution. The resulting method provides a unified proce-
dure for the estimation of continuous-valued spike times that
operates correctly in the presence of overlapping spikes, and
does not rely on any auxiliary heuristic pre-processing or post-
processing such as alignment of spike segments or searching for
spike combinations. An initial version of this work was presented in
(Ekanadham et al., 2011b). A software implementation is available
at http://www.cns.nyu.edu/∼lcv/spikeSorting.html

1. Methods

1.1. Spike sorting using Continuous Basis Pursuit (CBP)

Our method is derived from a simple generative model for the
observed voltage trace (Sahani, 1999; Pillow et al., 2008, 2013),
as illustrated in Fig. 2. A spike from the nth neuron, occurring at
time {�ni}, is assumed to produce a temporally localized wave-
form aniWn(t − �ni), where Wn(t) has unit norm, and ani represents
the (root-mean-squared) spike amplitude. These time-shifted and
scaled waveforms are then added together with noise to form the
electrode voltage trace:

V(t) =
N∑

n=1

Cn∑
i=1

aniWn(t − �ni) + �(t) (1)

In the case of multi-electrode recordings, V(t) and Wn(t) are vector-
valued with as many dimensions as electrodes, but for notational
convenience, the derivation below is written for the scalar case.

Fig. 2. Measurement model, illustrated for three neurons and a single electrode.
Each cell generates a voltage trace containing time-shifted copies of its spike wave-
form, and the observed voltage trace is assumed to be a sum of these and noise.
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