
Journal of Neuroscience Methods 222 (2014) 147– 155

Contents lists available at ScienceDirect

Journal  of  Neuroscience  Methods

jou rn al hom epage: www.elsev ier .com/ locate / jneumeth

Computational  Neuroscience

Quantification  of  pairwise  neuronal  interactions:  Going  beyond  the
significance  lines

Evi  Kopelowitz,  Iddo  Lev,  Dana  Cohen ∗

The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 52900, Israel

h  i  g  h  l  i  g  h  t  s

• The  performance  of  five  tests  for  detecting  significant  interactions  is  compared.
• A  novel  method  for  directly  assessing  the strength  of neuronal  interactions  is introduced.
• The  method  provides  broad  coverage  of  diverse  interactions.
• The  method  allows  detecting  time-dependent  alterations  in  neuronal  interactions.
• Reconstruction  of  the  interaction  parameters  of a  simulated  network  is  demonstrated.
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a  b  s  t  r  a  c  t

Background:  Normal  brain  function  depends  on intact  interactions  between  multiple  neuronal  ensem-
bles. Interactions  within  and  between  local  networks  comprising  multiple  neuronal  types  may  occur  on  a
range  of  time  scales  thus  affecting  the  estimation  of  interaction  strength.  A common  technique  to  investi-
gate  functional  interactions  within  neuronal  ensembles  is pairwise  cross-correlation  analysis.  However,
conventional  cross-correlation  methods  address  the  question  of  whether  an observed  peak  in  the  cross-
correlation  is statistically  significant  relative  to  the  null hypothesis  which  assumes  a  lack  of correlation.
Ultimately,  these  methods  were  not  designed  to  evaluate  the  strength  of  the  observed  interactions.
New  method:  We devised  four complementary  measures  – Triplets,  Bin  crossing,  Bin height  and  Entropy
–  for  assessing  the  strength  of neuronal  interactions;  each  is sensitive  to different  features  of  the  cross-
correlogram  peak  such  as height,  width  and  smoothness.
Results: First,  a comparison  of five  prevalent  methods  for evaluating  whether  an observed  peak  in neu-
ronal  cross-correlogram  is  significant  allowed  their ranking  from  the  most  conservative  to  the  more
sensitive  for purposes  of  selecting  the  appropriate  method  based  on  the  data  structure  and  preferred
strategy.  Second,  the  performance  of  the  four  measures  we  derived  improved  with  interaction  strength
and  the number  of spikes  in the cross-correlogram.  The  four measures  also  enabled  the  reconstruction
of  interaction  parameters  of  simulated  networks  including  the  detection  of  time-dependent  alterations.
Conclusions:  We  suggest  that  the  combination  of  several  measures  of  peak  characteristics  helps  rectify
the  individual  shortcomings  of specific  measures  and  can yield  a  broad  coverage  of  interaction  strengths
and  widths.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Normal brain function depends on intact interactions between
multiple neuronal ensembles (Gawne and Richmond, 1993; Zohary
et al., 1994; Vaadia et al., 1995). Over the years, methods designed to
analyze interactions between simultaneously recorded spike trains
have been put forward (Perkel et al., 1967; Abeles, 1982; Aertsen
et al., 1989; Nelken and Vaadia, 1990; Gawne and Richmond, 1993;
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Prut and Perlmutter, 2003). Nevertheless, the most popular method
remains the investigation of the cross-correlogram (CC) function,
which has been extensively used to detect interactions between
simultaneously recorded neuronal spike trains (Perkel et al., 1967;
Moore et al., 1970; Brody, 1999; Brown et al., 2004). Several signifi-
cance tests have been developed to evaluate whether the observed
peak (or trough) in the CC is significantly stronger (or weaker) than
expected by independent neuronal firing. These tests for significant
interactions are based on different statistical models of the neu-
ronal data structure (for instance, a Poisson (Abeles, 1982) versus
a normal (Sears and Stagg, 1976; Graham and Duffin, 1981; Katz
et al., 2002) variable distribution). Parameter selection can at times
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seem arbitrary, such as setting confidence limits (CL) at the 95% (2
standard deviations (SD) from the mean) or the 99.9% (5 SD from
the mean) as well as approaches implemented to deal with the
multiple comparisons problem (Miller and SpringerLink (Online
service), 1981). Surprisingly, method quality has never been com-
pared thus making it difficult to opt for one method over another
based on a given data structure. One of the reasons is that these sig-
nificance tests were designed to detect strong correlations, without
estimating other parameters such as the correlation strength and
time scale.

Correlated activity in the brain has been observed at various
time scales in spike trains, local field potentials and EEG scans
and ranges from a few ms  in direct common synaptic input to
hundreds and even thousands of ms  associated with more com-
plicated coupling mechanisms such as motivation and attention
(Brody, 1998; Smith and Kohn, 2008). Measuring the correlation
width may  reveal more information on network interactions and
the underlying processes. Time-dependent changes in correlated
activity are known to be related to mechanisms of synaptic plas-
ticity and information transfer (Markram et al., 1997; Zhang et al.,
1998). These changes may  occur independently as a result of vari-
ation either in the number of correlated cells or in the correlation
strength. Understanding which of these changes takes place dur-
ing cognitive processes is an important step toward describing the
mechanisms underlying neuronal interactions. Thus far, methods
for accurate evaluation of different types of interactions still lag
behind technical advances that enable the monitoring of many
neurons simultaneously (Nicolelis et al., 1997; Kralik et al., 2001).

In this paper we compare the performance of some of the most
commonly used methods for detecting significant neuronal cor-
relations, so as to facilitate appropriate method selection with
respect to the recorded data. In addition, we introduce a novel
technique aimed at measuring the strength of neuronal interac-
tions rather than determining their significance. This technique
utilizes four simple measures of the correlation strength each sen-
sitive to different features of the CC peak such as smoothness and
width. We found that: (1) the new technique enables the detec-
tion of time-dependent alterations in neuronal interactions; and
(2) the combination of several measures can overcome the indi-
vidual weaknesses of one specific measure. We  demonstrate this
complementarity by reconstruction of simulated network interac-
tion parameters using the proposed technique. The implications of
this technique as well as possible applications are discussed. For
simplicity, we focus here on excitatory couplings; however all the
calculations can be used for inhibitory couplings by making minor
adjustments.

2. Materials and methods

2.1. Simulated coupled pairs

We  numerically simulated binary spike trains of T seconds
(T = 300 s unless stated otherwise) with a resolution of �t  = 1 ms,
and the refractory period, tref, was set to 1 ms.  Correlated spike
trains were produced in the following way: the first spike train was
constructed randomly by defining the probability of spike genera-
tion at time t as:

Pspike(t) = r(t)
(1/�t)(1 − r(t) · tref)

where r(t) is the desired firing rate that may  be time dependent.
After every generated spike, tref/�t bins were set to zero to adjust
for the refractory period. This procedure generates pseudo-random
spike trains that imitate a Poisson point process with a refrac-
tory period (Abeles, 1982; Dayan and Abbott, 2001). The second
spike train was generated with a correlation to the first spike train

and was  determined by three parameters: the coupling strength
p which is the fraction of spikes to be correlated (from 0 to 0.9),
the mean of the coupling delay, which was  set to 10 ms,  and the
correlation time scale (i.e. the standard deviation of the coupling
delay) �, that varied from 2.5 ms  to 100 ms.  First, p of the spikes
in the first train were chosen randomly. Each was assigned with
a coupling delay drawn from the normal distribution N(10 ms,  �)
and was  placed in the second spike train at the time of its occur-
rence in the first train plus the corresponding coupling delay. The
remaining spikes to be added to the second spike train (according to
the desired rate) were generated randomly as described above and
the refractory period was also adjusted by setting tref/�t bins after
every spike to zero. The mean of the coupling delay does not play an
important role in the specific correlation measurements addressed
in this work since the distance of the peak in the CC from zero has
no impact on the significance or strength of the coupling. However,
�, the standard deviation of the coupling delay, plays a crucial role
determining the width of the CC.

In order to further validate our results we have also gener-
ated artificial spike trains using different statistics which do not
follow a Poisson process but a Cox process (Brette, 2009). Cross-
correlograms generated with these spike trains were similar to
those obtained with Poisson process and had similar statistical
properties as expected when sufficiently large spike counts are
used.

2.2. Definition of the significance tests

To compare the efficacy and reliability of different significance
tests we selected five of the commonly-used tests described below.

Test 1: The CC values are scaled to firing rates, and then
smoothed with a 10 ms  Gaussian window. The resulting values of
the outer parts are assumed to follow a Poisson-point process and
CLs, calculated separately for each bin, are chosen at the 0.5 and
99.5 percentile of the corresponding Poisson distribution function
(Fig. 1a, pink lines). The CC is considered significant if a straight line
placed between the CLs crosses them; i.e. if the maximum lower CL
within the inner bins is higher than the minimum upper CL within
the outer parts (Abeles, 1982; Frostig et al., 2008; Ma  and Lowe,
2010).

Test 2: The CC values are converted to firing rates, and the result-
ing values of the outer parts are assumed to follow a Poisson-point
process. CLs are chosen at the 0.5 and 99.5 percentile of the cor-
responding Poisson distribution function (Fig. 1a, orange line). The
CC is considered significant if one inner bin crosses the CLs (Perkel
et al., 1967; Ma  and Lowe, 2010).

In the following three tests, the CC values of the outer parts
are assumed to follow a normal distribution with mean (M) and
standard deviation (SD).

Test 3: The CLs are chosen at the 1st and 99th percentile of the
corresponding normal distribution function, divided by the number
of bins, in order to take into account multiple comparisons (Fig. 1a,
purple line). The CC is considered significant if one inner bin crosses
the CL (Bar-Gad et al., 2003; Rivlin-Etzion et al., 2006).

Test 4: The CLs are chosen at the 5th and 95th percentile of
the corresponding normal distribution function. Neuronal pairs are
considered significantly correlated if 3 consecutive bins of the inner
part values cross the CLs (Nevet et al., 2007; Oliveira-Maia et al.,
2012).

In this case, the number of triplets can be evaluated by the fol-
lowing equation:

#triplets  in CC = ˛(˛n − 2)(˛n − 4)
8(n  − 1)

Here,  ̨ is the confidence level determined by the number of SD
from the mean and n is the number of bins in the CC. For example,
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