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• A  new  contrast  decoding  method  based  on ICA  and  Naive  Bayesian  methods  was  proposed.
• The  modified  method  can  decode  contrast  efficiently.
• The  reconstruction  accuracy  of  visual  stimuli  is far  above  the  level  of  chance.
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a  b  s  t  r  a  c  t

Background:  Recent  advances  in  functional  magnetic  resonance  imaging  (fMRI)  techniques  make  it  possi-
ble  to  reconstruct  contrast-defined  visual  images  from  brain  activity.  In  this  manner,  the  stimulus  images
are  represented  as  the weighted  sum  of  a set of  element  images  with  different  scales.  The contrast  weight
of local  images  were  decoded  using  fMRI  activity  recorded  when  the  subject  was viewing  the  stimulus
images.  Multivariate  methods,  such  as the  sparse  multinomial  logistic  regression  model  (SMLR),  have
been  proven  effective  for  learning  the mapping  between  fMRI  patterns  of  primary  visual  cortex  vox-
els  and  contrast  of stimulus  images.  However,  the  SMLR  method  is highly  time-consuming  in practical
application.
New  method:  The  Naive  Bayesian  classifier  based  on independent  component  analysis  (NB-ICA)  is
proposed  to efficiently  decode  the contrast  of  multi-scale  local  images.  First,  temporal  independent
components  of  fMRI  data  which  were  treated  as  new  features  for  NB  classifier  were  acquired  by ICA
decomposition.  Second,  the  contrast  for each  local  element  image  was computed  based  on  NB  estimation
theory.
Results:  NB-ICA  method  can  be used  to reconstruct  novel  visual  images.  The  average  spatial  correlation
between  the  represented  and  reconstructed  images  was  0.41  ±  0.13 (p < 0.001).
Comparison  with  existing  method(s):  At  the  expense  of reconstruction  accuracy,  NB-ICA  is more  efficient
than  SMLR  which  reduces  the computation  time  from  hours  to  seconds.
Conclusions:  A  new  method,  termed  NB-ICA,  is  proposed  and  can  efficiently  reconstruct  contrast-defined
visual  images  from  fMRI  data. This  study  provides  theoretical  support  for  brain-computer  interface
research  and  also  provides  ideas  for the study  of  real-time  fMRI  data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Functional magnetic resonance imaging (fMRI) provides a con-
venient tool for measuring blood-oxygen-level-dependent (BOLD)
signals in the brain, a reflection of brain activity (Ogawa et al., 1992).
Recently, some multivariate computational methods, as opposed to
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univariate analysis methods, have been successfully applied to fMRI
data to decipher visual experiences (Kay et al., 2008; Mitchell et al.,
2008; Miyawaki et al., 2008; Naselaris et al., 2009; Nishimoto et al.,
2011; Thirion et al., 2006). In general, all visual decoding studies
establish systematic mapping between the visual stimuli and brain
activity. However, these studies differ in the output information
gathered from the fMRI data, that is, whether they classify, identify
or reconstruct the stimulus images (Kay and Gallant, 2009).

In classification, multivariate pattern recognition methods, such
as Fisher Linear Discriminant Analysis (Fisher LDA) and sup-
port vector machines (SVM), utilize the entire pattern of activity
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observed across multiple voxels to predict which stimulus or task
condition the subject was experiencing (Carlson et al., 2003; Cox
and Savoy, 2003; Davatzikos et al., 2005; Haxby et al., 2001;
Haynes and Rees, 2005a,b; Kamitani and Tong, 2006, 2005; O’toole
et al., 2005; Polyn et al., 2005; Spiridon and Kanwisher, 2002). In
identification, a computation model that captures the exact cor-
respondence between visual stimuli and brain activity is used to
identify which image the subject was viewing out of a set of can-
didate images, based on measurements of brain activity (Kay et al.,
2008; Mitchell et al., 2008). In an early study conducted by Thirion
et al. (2006), a receptive-field model was fit separately to each voxel
in the early visual areas to predict visual stimuli-elicited voxel
activation. This receptive-field model is an example of a typical
encoding model, which utilizes a Gabor wavelet pyramid to cap-
ture the relationship between fMRI activity and the characteristics
of visual stimuli, such as space, orientation and spatial frequency.
Then, the brain activity in early visual areas for each potential image
was predicted using the receptive-field model. The stimulus decod-
ing process (image identification) was accomplished by selecting
closely matched images whose predicted activity was most similar
to the measured brain activity recorded during image viewing (Kay
et al., 2008).

Recently, researchers have been able to reconstruct visual
images composed of flickering checkerboard patterns, more com-
plicated actual natural images, or even dynamic movies, rather
than simply choosing the stimulus materials from a known set
(Naselaris et al., 2009; Nishimoto et al., 2011). Unlike classifica-
tion, reconstruction relies heavily on the decoding model, which
reproduces the visual stimulus from brain activity (Kay et al., 2008;
Thirion et al., 2006). Kay et al. further advanced their fMRI decoding
work beyond identification to reconstruction of images and movies
by combining encoding models with prior stimuli. Given a fMRI
response pattern to a stimulus, the reconstruction model first lists
the candidate stimuli by sorting the posteriori in descending order,
then the single image can be reconstructed using the maximum a
posteriori (MAP) algorithm. Alternatively, the generation of a post-
normalized movie clip is yielded by averaging clips near the peak
of the posteriori, a method termed averaged high posterior (AHP)
reconstruction (Naselaris et al., 2009; Nishimoto et al., 2011).

Another image reconstruction study was conducted by
Miyawaki et al., which established a multi-scale local image
decoder to directly model the relationship between a contrast-
defined image stimulus and fMRI activity at the specific time when
the image was presented to the subject (Miyawaki et al., 2008)
(Fig. 1). In this reconstruction study, contrast-defined images were
modeled by a linear combination of local image elements, as fol-
lows:

�
I(z |r ) =

M∑
i=1

�i i(r)�i(z), i = 1, . . .,  M (1)

Here, �i(z) is the local image basis of four scales, 1 × 1, 1 × 2,
2 × 1, and 2 × 2 patch areas, and the coordinate of the image posi-
tion is represented by z, �i(z) = 1 if location z is contained in the area
of the local image element, otherwise �i(z) = 0. The number of the
image basis is represented as M.  Local image bases placed at every
location with overlap can be seen as elements of the reconstructed
image

�
I(z |r ), given the fMRI activity r recorded when the subject

was looking at the stimulus image. The combination coefficient �i
for each local image basis is employed to minimize reconstruction
errors. The local decoder,  i(r), predicts the contrast level for the
local image element �i(z) using a linearly weighted sum of activa-
tion of the fMRI voxels.

The weights in local decoder, wd
k
, denoting the weights of

voxel d and contrast label k for the local image basis �i(x), are
estimated using the multi-scale sparse multinomial logistic

regression (SMLR) model in Miyawaki’s study (2008). Here, we
use one local image base as an example to introduce the weight
parameter estimation algorithm that states: given a training data
set, maximum-likelihood (ML) estimation determines the weight
by finding values that maximize the likelihood function,

pw(S|w1, · · ·wk) =
N∏
n=1

K∏
k=1

pw(k|rn)snk (2)

pw(k|r) = exp[ywk (r)]

˙K
j=1exp[ywk (r)]

ywk (r) =
D∑
d=1

wdkr
d + w0

k

(3)

The Eqs. (2) and (3) are used to estimate the weight parameters
for local decoder in Eq. (1), where K is the number of the contrast
classes, N is the number of trials, D is the number of voxels. The
probability of fMRI pattern evoked by the stimulus image with con-
trast class k for the nth trial is represented as pw(k|rn), and class
label matrix is represented as S, whose element snk is 1 if the nth
trial falls into contrast class k, otherwise 0. The weight vector for
class k is represented as wk, which contains D + 1 elements (with
one bias term). In the SMLR model, the weight parameters wd

k
were

estimated using a full-Bayesian approach (Yamashita et al., 2008),
where the posterior distribution for each weight parameter was
represented by multiplying the above likelihood (Eq. (2)) with a
zero-mean normal prior distribution as Eq. (4) (Miyawaki et al.,
2008),

p(wdk |˛dk) = N

(
0,

1

˛d
k

)
(4)

where ˛d
k

is the hyper-parameter denoting the inverse of the vari-
ance, or precision, of the weight value for voxel d and contrast class
k. The hyper-parameter is also treated as a random variable, whose
distribution is defined by p(˛d

k
) = 1/˛d

k
.

One of the most important innovations in Miyawaki’s study is
the application of a multi-voxel pattern analysis method in element
image contrast estimation. Compared to a univariate method, such
as the contrast reconstruction model based on retinotopy in the
visual cortex (Thirion et al., 2006), the multivariate method not
only utilized the distinctiveness of a response to a given contrast
due to the regions that responded maximally to that contrast level
but also considered population encoding from the pattern in a wide
expanse of the cortex (Haxby et al., 2001; Norman et al., 2006). The
multivariate method takes into account the correlation of voxels,
i.e. the activity of voxels were treated as a whole pattern, which
can be used to characterize the correlation/covariance of activa-
tion across a set of voxels (such as brain regions), and has been
shown to be important in stimulus decoding studies (Averbeck
et al., 2006; Chen et al., 2006). Due to the tremendous amount of
voxels, in contrast decoders the weights of voxels are assumed to
be sparsely distributed to reduce computation consumption. The
SMLR model used here simultaneously accomplishes feature selec-
tion and prediction of contrast. Feature selection was achieved by
assuming sparse distribution of the weight parameters. For SMLR,
there are two ways to introduce a priori constraints for sparsity: (1)
implicit a priori constraints, based on automatic relevance deter-
mination (ARD) as shown in Eq. (4) (Wipf and Nagarajan, 2008;
Yamashita et al., 2008), and (2) explicit Laplacian prior constraints,
p(w) ∝ exp(−�||w||1), where ||w||1 = ˙lwl denotes the l1 norm
(Krishnapuram et al., 2005). Mathematically, the computation time
for ARD method is proportional to the feature number D3, while
the latter algorithm only requires computation time proportional
to D (Yamashita et al., 2008). In the study of Miyawaki et al. (2008),
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