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h  i  g  h  l  i  g  h  t  s

• Multiple  linear  regression  is  often  used  for  prediction  in  neuroscience.
• Random  forest  regression  is  an  alternative  form  of  regression.
• It does  not  make  the  assumptions  of linear  regression.
• We  show  that  linear  regression  can  be superior  to  random  forest  regression.
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a  b  s  t  r  a  c  t

Background:  Regression  is  a common  statistical  tool  for prediction  in neuroscience.  However,  linear
regression  is  by far  the most  common  form  of  regression  used,  with  regression  trees  receiving com-
paratively  little  attention.
New  method:  In  this  study,  the  results  of conventional  multiple  linear  regression  (MLR)  were  compared
with  those  of  random  forest  regression  (RFR),  in  the prediction  of  the  concentrations  of 9  neurochemicals
in  the vestibular  nucleus  complex  and  cerebellum  that  are  part of the  l-arginine  biochemical  path-
way  (agmatine,  putrescine,  spermidine,  spermine,  l-arginine,  l-ornithine,  l-citrulline,  glutamate  and
�-aminobutyric  acid  (GABA)).
Results:  The  R2 values  for the  MLRs  were  higher  than the  proportion  of  variance  explained  values  for  the
RFRs:  6/9 of  them  were  ≥0.70  compared  to 4/9 for RFRs.  Even  the  variables  that  had  the  lowest  R2 values
for  the  MLRs,  e.g.  ornithine  (0.50)  and glutamate  (0.61),  had  much  lower  proportion  of  variance  explained
values  for  the  RFRs  (0.27  and  0.49,  respectively).  The  RSE  values  for the  MLRs  were  lower  than  those  for
the  RFRs  in  all but two  cases.
Comparison  with  existing  methods:  In  general,  MLRs  seemed  to be  superior  to  the  RFRs  in  terms  of  predictive
value  and  error.
Conclusion:  In  the  case  of  this  data set,  MLR  appeared  to be  superior  to RFR  in terms  of  its  explanatory  value
and  error.  This  result  suggests  that MLR  may  have  advantages  over  RFR  for prediction  in  neuroscience
with  this  kind  of  data  set,  but  that  RFR  can still  have  good  predictive  value  in some  cases.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Linear regression is a part of the general linear model (GLM) that
is often used to predict one variable from another in neuroscience.
Simple linear regression can be expanded to include more than one
predictor variable to become multiple linear regression. However,
formal statistical tests of multiple linear regression, like simple lin-
ear regression, make assumptions regarding the distribution of the
data, which cannot always be fulfilled. These assumptions are that
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the data are normally distributed, with homogeneity of variance,
and that they are independent of one another (e.g. not autocorre-
lated) (Vittinghoff et al., 2005). Furthermore, the predictor variables
should be numerical, although indicator variables can be used in
order to include nominal variables (e.g., binary coding to represent
male and female). The violation of the assumption of normality can
sometimes be redressed using data transformation, which may also
correct heterogeneity of variance, but other issues such as autocor-
relation are not easily dealt with and may require methods such as
time series regression (Ryan, 2009).

Although modelling using regression trees has been used for
over 25 years, its use in the neurosciences has been very limited. In
regression tree modelling, a flow-like series of questions is asked
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about each variable (‘recursive partitioning’), subdividing a sample
into groups that are as homogeneous as possible by minimising the
within-group variance, in order to determine a numerical response
variable (Vittinghoff et al., 2005). The predictor variables can be
numerical also, or they can be ordinal or nominal. By contrast with
linear regression, no assumptions are made about the distribution
of the data. The data are usually split into training and test data sets
(e.g., 90:10) and the mean square error (MSE) between the model
based on the training data and the test data is calculated as a mea-
sure of the model’s success. Variables are chosen to split the data
based on the reduction in the MSE  achieved after a split (i.e., the
information gained). Unlike linear regression, interactions between
different predictor variables are automatically incorporated into
the regression tree model and variable selection is unnecessary
because irrelevant predictors are excluded from the model. This
makes complex, non-linear interactions between variables eas-
ier to accommodate than in linear regression modelling (Hastie
et al., 2009). Breiman et al. (1984) extended the concept of regres-
sion trees by exploiting the power of computers to simultaneously
generate hundreds of regression trees, known as ‘random forests’,
which were based on a random selection of a subset of data from
the training set. The various regression tree solutions are aver-
aged in order to predict the target variable with the smallest MSE
(Marsland, 2009).

The aim of this study was to compare the results of a con-
ventional multiple linear regression with those of random forest
regression, using data on the expression of neurochemicals related
to the l-arginine metabolic pathway in the rat hindbrain as an
example. Two areas of the hindbrain concerned with the control
of movement were investigated: the brainstem vestibular nucleus
complex (VNC) and the cerebellum (CE), in young (4 month old)
and aged (24 month old) rats (Liu et al., 2010). Chemical analy-
ses were performed to determine the concentrations of 9 related
neurochemicals that form a biochemical pathway that is critical
for neuronal function (see Fig. 1): agmatine, putrescine, spermi-
dine, spermine, l-arginine, l-ornithine, l-citrulline, glutamate and
�-aminobutyric acid (GABA). Although Fig. 1 presents certain causal
connections between some of these neurochemical variables, the
mechanisms through which they interact with one another are not
completely understood and additional pathways, particularly feed-
back pathways, are possible (Mori and Gotoh, 2004). It is therefore
of interest to determine whether the concentrations of one part of
this complex neurochemical pathway can be predicted from the
other parts.

2. Methods

2.1. Data set and variables

The data set was obtained from Liu et al. (2010). Male Sprague-
Dawley rats (aged: 24 months old, n = 14; young: 4 months old,
n = 14) were housed 3–5 per cage and maintained on a 12 h light-
dark cycle and provided with ad lib. access to food and water.
All experimental procedures were carried out in accordance with
the regulations of the University of Otago Committee on Ethics
in the Care and Use of Laboratory Animals. Animals were housed
either in a standard rat cage or an enriched environment including
toys and other novel objects, since enriched environments have
been shown to reduce age-related memory impairment (Olson
et al., 2006). Therefore, the sample sizes for the aged and young
groups were divided according to the housing conditions. In order
to achieve as large a sample size as possible, data from the VNC
and CE were combined in the regression analyses, so that for each
of the 9 neurochemical variables the total n was 58. This was con-
sidered to be a reasonable solution given the close physiological

Fig. 1. The arginine metabolic pathway showing the conversion of l-arginine to the
neurotransmitter, nitric oxide (NO), and l-citrulline, by the enzyme, nitric oxide
synthase (NOS), of which there are 3 isoforms; the conversion of l-arginine to
agmatine by the enzyme, arginine decarboxylase (ADC), which is then converted
to polyamines such as putrescine, spermidine and spermine by agmatinase and
ornithine decarboxylase (ODC); and the conversion of l-arginine to l-ornithine by
arginase, which is then converted to the same polyamines, which are essential for
cell proliferation, differentiation and communication, including neuronal synaptic
plasticity in the brain. The major excitatory neurotransmitter, glutamate, is one of
the end products of l-arginine, and glutamate serves as a precursor for the synthesis
of the major inhibitory neurotransmitter, GABA. Therefore, all of these neurochem-
icals are interconnected.

relationship between the VNC and CE (Liu et al., 2010). This meant
that for the aged group with standard housing, n was = 13, aged
with enriched housing, n was  = 16; young with standard hous-
ing, n was = 14, and for young with enriched housing, n was = 15.
These smaller sample sizes were less important because age and
enrichment were categorical variables that were never the tar-
get variables, but they were included in the regression analyses as
predictor variables. A previous study using the same data set ana-
lysed the data using multivariate analyses of variance (MANOVAs),
linear discriminant and cluster analyses (Liu et al., 2010), but
the main interest in the latter case was  the prediction of the
age of the brain tissue based on the other variables rather than
predicting neurochemical concentrations using regression analy-
ses. Determination of the concentrations of agmatine, putrescine,
spermidine, spermine, l-arginine, l-ornithine, l-citrulline, gluta-
mate and �-aminobutyric acid (GABA) was carried out using high
performance liquid chromatography (HPLC) or a highly sensitive
liquid chromatography/mass spectrometric (LC/MS/MS) method
and expressed as �g/g of wet  tissue weight (see Liu et al., 2008a,
2010 for details).

The experimental design thus consisted of 2 main indepen-
dent variables: age with 2 levels, 4 months old and 24 months
old; and housing, with 2 levels, standard and enriched. There were
9 potential dependent variables corresponding to the concentra-
tions of agmatine, putrescine, spermidine, spermine, l-arginine,
l-ornithine, l-citrulline, glutamate and GABA. However, in any one
regression analysis, only one of these continuous neurochemical
variables was  the target or y variable and the other 8 were included
as predictor variables. Consequently, each analysis involved 10 pre-
dictor variables, i.e. 8 continuous variables and 2 categorical ones,
and one dependent continuous neurochemical variable.



Download English Version:

https://daneshyari.com/en/article/6268947

Download Persian Version:

https://daneshyari.com/article/6268947

Daneshyari.com

https://daneshyari.com/en/article/6268947
https://daneshyari.com/article/6268947
https://daneshyari.com

