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h  i  g  h  l  i  g  h  t  s

• A  new  model  for  monitoring  the  sleep  stages  is built  based  on  Hilbert  Huang  transform.
• Two  main  oscillations  were  defined  to depict  the  feature  of  sleep  EEG  based  on HHT.
• Slow-  and  fast-waves  oscillations  correspond  to fluctuations  in  the  delta  and  high  frequency  band.
• DFA  �1  was  used  to  reflect  the  ANS  activity  during  sleep.
• The  relationship  between  sleep  EEG  and  HRV  was  significantly  confirmed  in  this  study.
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a  b  s  t  r  a  c  t

Background:  The  multi-mode  modulation  is a key  feature  of sleep  EEG.  And  the  short-term  fractal  property
reflects  the  sympathovagal  modulation  of  heart  rate variability  (HRV).  The  properties  of EEG  and  HRV
strongly  correlated  with  sleep  status  and  are  interesting  in  clinic  diagnosis.
New  method:  19 healthy  female  subjects  were  included  for over-night  standard  polysomnographic  study.
Hilbert  Huang  transform  (HHT)  was  used  to characterize  the  temporal  features  of  slow-  and  fast-wave
oscillations  decomposed  from  sleep  EEG  at  different  stages.  Masking  signals  were  used  for  solving  the
mode-mixing  problem  in  HHT.  On  the other  hand,  detrended  fluctuation  analysis  (DFA)  was  used  to  assess
short-term  property  of  HRV  denoted  as  DFA  �1,  which  reflects  the  temporal  activity  of autonomic  nerve
system  (ANS).  Thus,  the  dynamic  interaction  between  sleep  EEG  and  HRV  can  be  examined  through  the
relationship  between  the  features  of sleep  EEG  and  DFA  �1 of HRV.
Results:  The  frequency  feature  of sleep  EEG  serves  as  a good  indicator  for the  depth  of sleep  during  non-
rapid  eye  movement  (NREM)  sleep,  and  amplitude  feature  of  fast-wave  oscillation  is  a good  index  for
distinguishing  rapid  eye  movement  (REM)  from  NREM  sleep.
Comparison  with  existing  method:  The  relationship  between  DFA  �1 of  HRV  and  the  mean  amplitude  of
fast-wave  oscillation  of sleep  EEG  affirmed  with  Pearson  correlation  coefficient  is  more  significant  than
the  correlation  verified  by  the  traditional  spectral  analysis.
Conclusion:  The  dynamic  properties  of sleep  EEG  and  HRV  derived  by EMD  and  DFA  represent  important
features  for  cortex  and  ANS  activities  during  sleep.
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1. Introduction

Clinical studies have shown that acute stress affects heart rate
variability during sleep (Hall et al., 2004), particularly slow-wave
sleep, which is thought to be associated with a “restorative” or
“refreshing” sensation (Tasali et al., 2008). The dynamic interac-
tions between EEGs and cardiac autonomic function during sleep
have only been explored and reported using fast Fourier transform

0165-0270/$ – see front matter ©  2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jneumeth.2013.08.008

dx.doi.org/10.1016/j.jneumeth.2013.08.008
http://www.sciencedirect.com/science/journal/01650270
http://www.elsevier.com/locate/jneumeth
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jneumeth.2013.08.008&domain=pdf
mailto:mzlo@ncu.edu.tw
mailto:jhk@tmu.edu.tw
dx.doi.org/10.1016/j.jneumeth.2013.08.008


234 J.-R. Yeh et al. / Journal of Neuroscience Methods 219 (2013) 233– 239

based (FFT-based) analysis (Jurysta et al., 2003). Those properties of
sleep electroencephalogram (EEG) and heart rate variability (HRV)
have been used in many clinical diagnoses, such as sleep apnea syn-
drome (Roche et al., 1999; Jurysta et al., 2006), depressive disorder
(Jurysta et al., 2010), and acute schizophrenia (Boettger et al., 2006).

In traditional sleep medicine, human sleep is polygraphically
defined by stages 1, 2, 3, 4 of non-rapid eye movement (NREM)
sleep and rapid eye movement (REM) sleep, according to the
“Manual of Standardized Terminology, Techniques and Scoring Sys-
tem for Sleep Stages of Human Sleep” proposed by Rechtschaffen
and Kales (R-K criteria) (Rechtschaffen and Kales, 1968). The four
stages of NREM sleep are denoted as NREM1, NREM2, NREM3, and
NREM4. Spectral analysis uncovers more detailed sleep fluctua-
tions beneath the continuous fluctuating pattern of EEG signals
during sleep (Uchida et al., 1992, 1994, 1999). On the other hand,
the dynamics of HRV serves as a good assessment of autonomic
nerve system (ANS) activity during sleep (Mina et al., 2003).
Spectral analysis is commonly used in the investigations asso-
ciated with sleep EEG and HRV (Mina et al., 2003; Otzenberger
et al., 1997, 1998; Ehrhart et al., 2000; Brandenberger et al.,
2001).

However, both sleep EEG and HRV are nonlinear and non-
stationary signals. In this study, we aimed to re-investigate the
features of sleep EEG and the dynamic properties of HRV based on
two innovative analysis algorithms, which were particularly devel-
oped for analyzing nonlinear and non-stationary signals. Empirical
mode decomposition (EMD) is the first nonlinear algorithm for
decomposing a time series into a finite number of intrinsic mode
functions (IMFs) (Huang et al., 1998). In addition, the frequency and
amplitude modulations of an IMF  can be derived by Hilbert trans-
form. The association of EMD  and Hilbert transform is named as
Hilbert Huang transform (HHT). The second algorithm is detrended
fluctuation analysis (DFA) (Peng et al., 1995a), which serves to
quantify the fractal property of signals. The short-term (scales
4–11) fractal property of human heart beat time series denoted
as DFA �1 represents a state function of autonomic nerve sys-
tem (ANS) during sleep (Tulppo et al., 2005; Penzel et al., 2003).
A high value of DFA �1 represents an active state of ANS, often
observed during REM sleep. A low value of DFA �1 represents
an inactive state of ANS, often observed during slow wave sleep
(SWS).

In this study, sleep EEG recordings were decomposed into a set
of IMFs by EMD. Two major oscillations denoted as slow-wave (SW)
and fast-wave (FW) oscillations were reconstructed using IMFs
according to the averaged frequencies of IMFs. Both SW and FW
oscillations were smoothed by moving average to represent two
major oscillatory fluctuations of sleep EEG. Furthermore, Hilbert
transform was used to derive the frequency and amplitude modu-
lations of the smoothed SW and FW oscillations. Frequency and
amplitude modulations of SW and FW oscillations represent the
temporal features of sleep EEG at different stages. Thus, the sleep
stages can be automatically verified based on the features of sleep
EEG.

In clinic, sleep EEG reflects the activities of cortices and HRV
reflects the activity of ANS. The interaction between sleep EEG
and HRV can be verified as the relationship between the tempo-
ral features of sleep EEG and DFA �1 of HRV in comparison with
the association between the power of delta band of sleep EEG and
the normalized HF power of HRV in spectral analysis (Jurysta et al.,
2003, 2006, 2010). The relationship between the features of EEG
and DFA �1 of HRV was verified by Pearson correlation coefficient
with value of 0.512 ± 0.171. The association between the power
of delta band of sleep EEG and the normalized HF power of HRV
was also verified by Pearson correlation coefficient with value of
0.261 ± 0.212. Both results reflect a correlation between the activ-
ities of cortices and ANS. The relationship between the features of

sleep EEG and DFA �1 of HRV is more significant than the relation-
ship verified by FFT-based methods.

2. Material and methods

2.1. Subjects

Gender differences can be observed in sleep parameters; to pre-
vent confounding effects due to gender, we recruited only women
for the present study. In total, 19 healthy women (aged 30.5 ± 3.4
years) were recruited. All subjects provided their informed consent,
and the study was  approved by the local IRB.

2.2. Polysomnography (PSG)

Standard overnight PSG was  performed using a computerized
sleep-scoring system under the continuous monitoring of board-
certificated sleep technicians (Sandman; Tyco Ltd. Ottawa, Canada)
in the sleep lab of the teaching hospital. The subjects in the PSG
study were asked to maintain their usual sleep schedule for one
week prior to the study. To minimize the interference of menstru-
ation on sleep and pain, the PSG was conducted 7–10 days after
each subject’s last menstrual period. The PSG recordings began at
the subjects’ usual bedtime and ended at their usual waking time
in the morning. The PSG recordings included 21 channels: 6 chan-
nels for EEG (C3/C4/O1/O2/A1/A2 in 10–20 systems), 2 channels
for electrooculogram (EOG), 6 channels for electromyogram (EMG)
over the submental and bilateral anterior tibialis muscle, 2 chan-
nels for electrocardiogram (ECG), 1 channel for a nasal cannula flow
meter, 2 channels for abdomen and chest movement, 1 channel for
pulse oximetry, and 1 channel for a position sensor. The tempera-
ture of the recording room was  maintained between 24 and 26 ◦C.
A blinded, board-certified, experienced sleep technician manually
performed the PSG scoring in 30-second epochs following the R-K
criteria (Rechtschaffen and Kales, 1968). The parameters for sleep
onset latency, sleep efficiency, total sleep time, sleep stage, and
other sleep events were scored accordingly. The raw data of the
PSG were stored digitally for further processing and analysis. The
sampling rate for the EEG and ECG was  128 Hz.

2.3. Decomposing sleep EEG into slow- and fast-wave oscillations
by EMD

The EMD  decomposes a time series into a set of intrinsic mode
functions (IMFs) (Huang et al., 1998). An IMF  must satisfy a nec-
essary condition that the numbers of zero-crossings and extrema
must be equal or at most differ by 1, and it guarantees a well-
behaved Hilbert transform of the IMF. The relationships among the
original signal, IMFs and the residue can be expressed as:

X(t) =
n∑

k=1

Ck(t) + R(t) (1)

where X(t) is the original time series; Ck(t) is the kth IMF; n is the
number of IMFs; and R(t) is the residue.

The averaged period and energy density of an IMF  can be deter-
mined by the following equations provided by Wu and Huang
(2004) and the averaged frequency is the inverse of averaged
period.

En = 1
N

N∑
j=1

[Cn(j)]

2

(2)
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