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• For  the first  time,  robust  statistics  is  possible  due  to  our  new  method.
• The  proposed  method  outperforms  conventional  methods.  It renders  confidence  intervals  as  small  as  possible.
• The  new  method  precludes  false  positive  conclusions.

a  r  t i  c  l  e  i  n  f  o

Article history:
Received 18 May  2013
Received in revised form 30 July 2013
Accepted 31 July 2013

Keywords:
Statistics
Distribution estimation
Autocorrelation
Measurement noise
Dependent data
Tremor

a  b  s  t  r  a  c  t

Background:  Statistical  inference  of  signals  is  key  to  understand  fundamental  processes  in  the  neu-
rosciences.  It  is essential  to distinguish  true from  random  effects.  To  this  end,  statistical  concepts  of
confidence  intervals,  significance  levels  and  hypothesis  tests  are  employed.  Bootstrap-based  approaches
complement  the  analytical  approaches,  replacing  the  latter  whenever  these  are  not  possible.
New  method:  Block-bootstrap  was  introduced  as  an adaption  of  the  ordinary  bootstrap  for  serially  corre-
lated  data.  For  block-bootstrap,  the  signals  are cut into  independent  blocks,  yielding  independent  samples.
The key parameter  for block-bootstrapping  is  the block  length.  In the  presence  of noise,  naïve  approaches
to  block-bootstrapping  fail. Here,  we  present  an  approach  based  on block-bootstrapping  which  can  cope
even with  high  noise  levels.  This  method  naturally  leads  to  an algorithm  of  block-bootstrapping  that  is
immediately  applicable  to observed  signals.
Results:  While  naïve  block-bootstrapping  easily  results  in  a misestimation  of the block  length,  and  there-
fore  in  an  over-estimation  of  the confidence  bounds  by  50%,  our new  approach  provides  an  optimal
determination  of these,  still keeping  the  coverage  correct.
Comparison  with  existing  methods:  In several  applications  bootstrapping  replaces  analytical  statistics.
Block-bootstrapping  is  applied  to serially  correlated  signals.  Noise,  ubiquitous  in the  neurosciences,  is
typically  neglected.  Our  new  approach  not  only  explicitly  includes  the  presence  of  (observational)  noise
in  the  statistics  but  also  outperforms  conventional  methods  and  reduces  the  number  of false-positive
conclusions.
Conclusions:  The  presence  of  noise  has  impacts  on  statistical  inference.  Our  ready-to-apply  method
enables  a  rigorous  statistical  assessment  based  on block-bootstrapping  for  noisy  serially  correlated  data.
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1. Introduction

In the neurosciences, concepts, mechanisms, and characteris-
tics often need to be inferred from measured signals. This typically
renders powerful means for statistical evaluation necessary to pre-
clude erroneous conclusions. For several data analysis approaches
analytic evaluation schemes have been developed. For others,
numerical Monte-Carlo based approaches are used to evaluate the
statistical significance of the findings. The bootstrap has emerged as
a powerful tool for this (Efron, 1979; Arndt et al., 1996; Davison and
Hinkley, 1997; Foster and Bischof, 1987; Hentschke and Stüttgen,
2011; Zoubir and Boashash, 1998).

The general idea of bootstrap is to provide the distribution of a
statistics based on the measured signals alone, when the analytic
derivation of the statistics is not known. The distribution is sam-
pled by randomly drawing with replacement from the measured
data (Efron and Gong, 1983; Hall et al., 1995). Once this empirical
distribution is obtained from the bootstrap, confidence intervals
can be derived and hypothesis tests can be performed based on
the empirical ˛-quantiles. Bootstrapping leads to a valid approx-
imation of the true distribution of the test statistics under some
assumptions (Mammen, 1992).

Among others, independence of the sampled data points is one
assumption that has to be fulfilled in order to render bootstrapping
sensible. When investigating time series as often measured in the
neurosciences, this fundamental prerequisite for the applicability
of bootstrap is violated. The temporal correlation, which charac-
terises the dependence of the random variables of the time series,
can be quantified by the autocorrelation function. This insight has
led to the idea of block-bootstrapping (Carlstein, 1986; Hall et al.,
1995; Künsch, 1989).

For temporally correlated data, block-bootstrapping draws with
replacement from a set of independent blocks, i.e. snippets of the
data (Davison and Hinkley, 1997). The appropriate choice of the
block length is a key parameter and does not only depend on the
measured time series but also on the analysis technique that is
applied. “Optimality” in case of block-bootstrapping refers to the
minimal squared distance between the true and the estimated
quantity, yielding a trade-off between squared bias and variance
(Peifer et al., 2005; Percival and Walden, 1993; Schelter et al., 2007).

The decay rate of the autocorrelation function as a measure
of dependence in the data is the vital parameter in block-
bootstrapping, as has been shown for the variance (Peifer et al.,
2005) and mean phase coherence (Schelter et al., 2007), explicitly.
It needs to be estimated as reliably as possible in order to render
the segments as short as possible but long enough to guarantee
independence. The decay rate in the autocorrelation can either be
estimated by fitting an exponential function to the envelope of the
empirical autocorrelation function or alternatively it can be esti-
mated by modelling the process as an autoregressive one. While
the latter is sensible only for small orders of the autoregressive
model, the former provides a robust means for more complicated,
potentially nonlinear dynamics as well.

A naïve choice of block length yields a bias or high variance of
the statistics, and eventually fails in providing an optimal estimate
for the block length. This is due to the influence of noise, becoming
particularly important in the case of measurement noise or in cases
in which the signal itself is modulated noise. While for the former
the electroencephalography (EEG) is a prototypical example, the
electromyography (EMG) is genuine for the latter.

As we demonstrate in this manuscript, the presence of these two
types of noise strongly influences the determination of the optimal
block length. A modification of conventional methods is necessary
otherwise sub-optimal or even anti-conservative statistics can be
obtained due to an underestimation of the block lengths. As we
demonstrate here by both analytic calculations and simulations,

the amount to which the length is underestimated is a function
of the noise to signal ratio. We  provide a modified block length
selection approach that is robust with respect to the presence of
a range of noise levels. We demonstrate the benefit of this new
approach not only in model systems but also by investigating con-
fidence intervals for the tremor amplitude based on EMG  activity.
The amplitude provides a measure for tremor severity and is there-
fore key to support physicians in the various tasks, such as the
diagnosis or treatment of tremor. However, we emphasise that the
proposed approach is not confined to EMG  recordings and tremor
data. Neither does it depend on recording modalities, such as EEG,
EMG or fMRI, nor on scientific fields, such as tremor or epilepsy.
Examples of its applicability are seizure detection as initiated by
Gotman (1982), various studies concerned with network estima-
tion, e.g. by the mean phase coherence (Schelter et al., 2007), or
resting state studies (Bellec et al., 2010).

The manuscript is structured as follows. In Section 2 we present
the EMG  data of a tremor patient and the systems used to model
them. We  first (Section 2.1) introduce the EMG  data that we  aim to
analyse and specify the impacts of noise onto the analysis. Based
on the EMG  data, parameters of the model system are adapted.
As a second step (Section 2.2) we demonstrate the weaknesses of
conventional block length selections in the presence of noise. We
analytically derive how this can be overcome with our new robust
block-bootstrapping. In Section 3 we  apply block-bootstrapping to
both the model system and the measured EMG  signals of a tremor
patient, deriving confidence intervals. We  compare the confidence
intervals obtained from the modified block length selection to the
unmodified version, showing the superior efficiency of our method.

2. Material and methods

To motivate and illustrate the new approach to block-
bootstrapping, we  use an example of a representative recording of
the wrist muscle activity of a tremor patient measured by EMG  (see
Fig. 1a). We  model the EMG  by autoregressive processes (Fig. 1b) in
order to analytically show the effect of noise onto the block length
selection.

2.1. Tremor example

Tremor is characterised by an involuntary oscillating movement
of extremities. In essential tremor, a hereditarian form of patholog-
ical tremor, typically, the hands tremble at a frequency at around

a

b

Fig. 1. Short section of data from a rectified EMG  (a), and an autoregressive process
(b) with parameters a1 = 1.9975 and a2 = −0.9987, intrinsic noise variance �2 = 0 .052

and measurement noise variance ˙2 = 302 (see Eqs. (1) and (2)).
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