
Journal of Neuroscience Methods 213 (2013) 263– 273

Contents lists available at SciVerse ScienceDirect

Journal  of  Neuroscience  Methods

jou rna l h om epa ge: www.elsev ier .com/ locate / jneumeth

Computational  Neuroscience

A  critique  of  Tensor  Probabilistic  Independent  Component  Analysis:
Implications  and  recommendations  for  multi-subject  fMRI  data  analysis

Nathaniel  E.  Helwiga,b,∗, Sungjin  Honga

a Department of Psychology, University of Illinois, Champaign, IL 61820-6232, USA
b Department of Statistics, University of Illinois, Champaign, IL 61820-5710, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 5 September 2012
Received in revised form
10 December 2012
Accepted 11 December 2012

Keywords:
Tensor Probabilistic Independent
Component Analysis
Tensor PICA
PICA
Neuroimage data analysis
Parallel Factor Analysis
Parafac

a  b  s  t  r  a  c  t

Tensor  Probabilistic  Independent  Component  Analysis  (TPICA)  is  a popular  tool  for  analyzing  multi-
subject  fMRI  data  (voxels  ×  time  ×  subjects)  because  of TPICA’s  supposed  robustness.  In this  paper,  we
show  that  TPICA  is not  as robust  as  its authors  claim.  Specifically,  we  discuss  why  TPICA’s  overall  objec-
tive is  questionable,  and  we present  some  flaws  related  to the iterative  nature  of  the  TPICA  algorithm.
To  demonstrate  the  relevance  of  these  issues,  we  present  a simulation  study  that  compares  TPICA  versus
Parallel  Factor  Analysis  (Parafac)  for analyzing  simulated  multi-subject  fMRI  data.  Our  simulation  results
demonstrate  that  TPICA  produces  a systematic  bias  that  increases  with  the  spatial  correlation  between
the  true  components,  and  that  the  quality  of  the  TPICA  solution  depends  on the  chosen  ICA algorithm
and  iteration  scheme.  Thus,  TPICA  is not  robust  to  small-to-moderate  deviations  from  the  model’s  spatial
independence  assumption.  In contrast,  Parafac  produces  unbiased  estimates  regardless  of  the spatial  cor-
relation  between  the true components,  and  Parafac  with  orthogonality-constrained  voxel  maps  produces
smaller  biases  than  TPICA  when  the true  voxel  maps  are  moderately  correlated.  As a result,  Parafac
should  be  preferred  for  the  analysis  multi-subject  fMRI  data  where  the  underlying  components  may
have  spatially  overlapping  voxel  activation  patterns.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Beckmann and Smith (2005) proposed the Tensor Probabilistic
Independent Component Analysis (TPICA) model for the analysis of
multi-subject functional magnetic resonance imaging (fMRI) data
of the form voxels × time × subjects. According to Beckmann and
Smith (2005),  the TPICA model is a three-way extension of the
PICA model (Beckmann and Smith, 2004), analogous to how the
Parallel Factor Analysis model (Parafac; Harshman, 1970) is a three-
way extension of the standard Principal Component Analysis model
(Hotelling, 1933; Pearson, 1901). In their seminal paper, Beckmann
and Smith (2005) provide an iterative two-stage algorithm to esti-
mate the TPICA model’s parameters, and state that this algorithm
will decompose multi-subject fMRI data “into a set of independent
spatial maps together with associated time courses and estimated
subject modes” (p. 295). Furthermore, Beckmann and Smith (2005)
state that “[c]ompared to a Parafac decomposition, the [T]PICA esti-
mation shows... an increased robustness against deviation from
the model assumptions” (p. 309). Since the introduction of TPICA,
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numerous studies have used the approach to analyze multi-subject
neuroimage data (e.g., Hermans et al., 2011; Ibarretxe-Bilbao et al.,
2011; Jeong and Kubicki, 2010; Leech et al., 2011; Lesage et al.,
2010; O’Muircheartaigh et al., 2011; Poudel et al., 2010; Sala-Llonch
et al., 2010; Sauvage et al., 2011; Wolf et al., 2010).

In this paper, we  show that TPICA does not necessarily per-
form as Beckmann and Smith (2005) claim it does. Specifically, we
provide an explicit formulation of Beckmann and Smith’s proposed
TPICA algorithm, and we  point out some fundamental flaws of the
approach. The first flaw relates to TPICA’s overall objective (i.e.,
enforcing independence on the estimated voxel maps in trilinear
fMRI data), which is only appropriate when the true components
have voxel maps with non-overlapping activation patterns. The
second flaw relates to the TPICA algorithm’s iterative nature, and
can be corrected with a simple adjustment to the estimation pro-
cedure. To demonstrate the implications of these flaws, we present
the results of a simulation study comparing the quality of a TPICA
solution versus a Parafac solution when analyzing simulated multi-
subject fMRI data. The simulation manipulates the number of active
voxels that are shared between the components (as well as the data
signal-to-noise ratio), in attempt to examine how varying degrees
of spatial correlation (i.e., overlapping voxel activity) between the
components affect the quality of the TPICA and Parafac component
estimates.
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The remainder of this paper is organized as follows. First, the
general ideas of ICA and PICA are presented. Then, the Parafac and
TPICA models are presented, highlighting the distinctions between
the two models’ assumptions. Next, the benefits of Parafac and
TPICA for multi-subject fMRI data analysis are compared, and some
limitations of TPICA are discussed. We  then present a simulation
study comparing TPICA and Parafac for the analysis of multi-subject
fMRI data. Finally, we discuss the implications of our findings for
neuromiage data analysis, as well as the potential of Parafac for the
analysis of multi-subject neuromiage data.

2. Theory

2.1. Notation

Scalars will be denoted by lower-case italic Roman letters,
vectors by lower-case boldface Roman letters, and matrices by
upper-case boldface Roman letters. This rule will be broken
when writing generic indices (e.g., j = 1, . . .,  J). For a given matrix
A ≡ {aij}I×J, the transpose will be denoted by A′, and the inverse
by A−1. The Kronecker product of A ≡ {aij}I×J and B ≡ {bkl}K×L

will be denoted using ⊗, such as A ⊗ B ≡ {aijB}KI×LJ. Similarly,
the Khatri-Rao product (i.e., columnwise Kronecker product) of
A ≡ {aik}I×K and B ≡ {bjk}J×K will be denoted using �, such as
A � B ≡ {ak ⊗ bk}JI×K, where ak and bk denote the kth columns of
A and B, respectively. Functions will be denoted using lower-case
Greek letters such as �, and a function’s first and second derivatives
will be denoted using accents of one and two dots, respectively,
such as �̇ and �̈.  Finally, all scalars, vectors, matrices, and arrays
that are assumed to be random variables will be underlined.

2.2. Overview of ICA and PICA

2.2.1. ICA model
Suppose that x ≡ {xj}J×1

is an observable random vector that

takes values in R
J (the set of all real-valued J-dimensional vectors).1

The ICA model (see Comon, 1994; De Lathauwer et al., 2000)
assumes that the observed signals x have the form

x = Ma + e (1)

where a ≡ {af }F×1
is a vector of latent random variables (referred

to as source signals)  that are assumed to be mutually independent
of one another, M ≡ SR is the J × F unobservable mixing matrix that
linearly transforms (i.e., mixes) the source signals to produce the
observed signals, S ≡ {sjf}J×F is the long (i.e., J > F) portion of the mix-
ing matrix related to the covariance structure of x, R ≡ {rf1f2 }

F×F
is

an orthogonal rotation matrix, and e ≡ {ej}J×1
is a vector of latent

noise signals.  In addition, it is assumed that (a) at most, one element
of a is Gaussian, while the remaining elements are non-Gaussian,
(b) a and e are independent of one another, and (c) the variables x,
a, and e each have zero mean vectors and finite covariance matri-
ces. Given realizations of x, the goal of ICA is to estimate the mixing
matrix and/or the corresponding realizations of the source signals.

Without making any additional assumptions about the distri-
bution of e, the decomposition proposed in Eq. (1) is an ill-posed
problem, because there is not enough information to distinguish
the source signals from the noise signals. However, if the covari-
ance matrix of e is assumed to have the form E(e- e-

′) = t2T (where E
denotes the statistical expectation and T ≡ {tj1j2 }

J×J
is some positive

1 ICA can also be formulated for complex-valued vectors, but only real-valued
vectors will be considered in this paper.

definite, symmetric matrix), then x can be prewhitened to produce
a reformulated ICA model with white noise:

xp = SpRa + ep (2)

where xp = T−1/2x is the prewhitened observed vector, Sp = T−1/2S
is the prewhitened structure portion of the mixing matrix, ep ≡
T−1/2e is the prewhitened noise vector, T−1/2 ≡ VD−1/2V′, and VDV′

is the full-rank eigenvalue decomposition of T. After prewhitening,
the covariance matrix of the noise vector has the form E(e-p e-

′
p) =

t2IJ (where IJ represents the J×J identity matrix), and the covari-
ance matrix of xp has the form E(x-p x-

′
p) = SpS′

p + t2IJ . This assumes
that the elements of a have unit variance, which can be assumed
(without loss of generality) because the scales of the source signals
and the mixing vectors are undetermined in the ICA model.

For a random data matrix X ≡ {xij}I×J
that consists of I samples

measured on J random variables, the ICA model can be written as

X = A R′ S′ + E (3)

where the rows of A ≡ {aif }I×F
and E ≡ {eij}I×J

contain samples of the

random vectors a and e from Eq. (1).  Defining the prewhitened data
matrix as Xp ≡ XT−1/2, the covariance structure of the prewhitened
data matrix is assumed to follow the same form as that of the
prewhitened vectors: E(I−1X′

p Xp) = SpS′
p + t2I J . Letting the sin-

gular value decomposition (SVD) of Xp be denoted by UDV′, the
covariance matrix of the prewhitened data can be written as
E(I−1X′

p Xp) = I−1VD2V′. Note that the matrix V(I−1D2 − t2IJ)V′ will
be equivalent to SpSp

′ and can be used to determine the source
signal subspace (i.e., the range of Sp). Furthermore, assuming that

the ICA model is correct, we have that Sp = VF (I−1D2
F − t2IF )

1/2
,

where VF and DF denote the first F singular vectors and values of
Xp, respectively.

Letting UF DF V′
F denote the rank-F SVD of Xp, the prewhitened

data can be projected onto the signal subspace and quasiwhitened,
such as

Xq = A R′ + Eq (4)

where Xq ≡ Xp VF (I−1D2
F − t2IF )

−1/2
is the I × F matrix of quasi-

whitened data, and Eq ≡ EpVF (I−1D2
F − t2IF )

−1/2
is the correspond-

ing error term. Note that we refer to this as quasiwhitening because
the residuals in the quasiwhitened model are no longer whitened:

E(I−1X′
q Xq) = IF + t2(I−1D2

F − t2IF )
−1

. So, postmultiplying by R

Xq R = A + Eq R (5)

we see that the residuals are correlated: define Z ≡ XqR and note

that E(I−1Z′ Z) = IF + t2R′(I−1D2
F − t2IF )

−1
R. Thus, the matrix Z is

not whitened (or even uncorrelated), and the extent of the cor-
relation between the columns of Z will depend on the magnitudes
of the elements of D2

F and t2, which depend on the signal-to-noise
ratio (SNR) in the data.

Given realizations of the observed signals, the general goal in ICA
is to estimate the mixing matrix. Thus, assuming the quasiwhitened
ICA model given in Eq. (4), the goal is to find the orthogonal rotation
matrix R̂ such that the source signal estimates

Â = Xq R̂ (6)

are as independent as possible. See Section 1 of the Supplementary
Online Material (SOM) that accompanies this article for descrip-
tions of Hyvärinen’s (1999) FastICA algorithm and Cardoso and
Souloumiac’s (1993, 1996) JADE algorithm.

2.2.2. PICA model
As formulated by Beckmann and Smith (2004),  the PICA model

has the same form as the ICA model given in Eqs. (1) and (3);
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