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a  b  s  t  r  a  c  t

The  InMotion2  and other  similarly  designed  robots,  are  commonly  used  for rehabilitation  of  neurological
injuries  and  motor  adaptation  studies.  These  robots  are  used  to simulate  haptic  environments;  however,
anisotropy  in  end-point  impedance  due  to the  intrinsic  robot  dynamics  can  compromise  these  experi-
ments.  The  goal  was  to  decrease  the magnitude  and  anisotropy  of  the  robot  impedance  using  a  dynamic
compensation  algorithm  that reduces  the  forces  normally  felt  by  the  user  during  rapid  movements.  We
tested  this  algorithm  with  two  different  methods  for real-time  calculation  of  derivatives,  a novel  quadratic
fit method  (CQF)  and  the commonly  used  backward  derivative  method  (CBD).  Six subjects  performed
a  series  of  point-to-point  movements  under  three  conditions  (no  compensation,  CQF,  CBD),  in  differ-
ent  directions  at  peak  speeds  of  50, 100  and  150  cm/s.  Without  compensation,  tangential  peak-to-peak
forces  were  as large  as  69 N in  certain  directions  at  the  150  cm/s  speed.  Both  CQF  and  CBD  significantly
reduced  tangential  forces  in  all directions  and  speeds.  CQF outperformed  CBD  in the  directions  with
highest  intrinsic  impedance,  reducing  tangential  forces  by  64% in  these  directions.  Compensation  also
significantly  reduced  forces  normal  to the  movement  direction,  with  CQF again  outperforming  CBD  in
several cases.  Anisotropy  was  assessed  by  the range  of  tangential  peak-to-peak  forces  across  movement
directions.  In the  no  compensation  condition,  anisotropy  was as  high  as  52.7  N  at  the 150  cm/s  speed,  but
an average  anisotropy  reduction  of 74%  was  achieved  with  CQF.  The  CQF  method  can  significantly  reduce
impedance  and  anisotropy  in this  class  of robot.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The InMotion2 (Interactive Motion Technologies Inc., Water-
town, MA,  USA) is the commercial version of the MIT-MANUS
arm robot for rehabilitation following neurological injuries (Krebs
et al., 1998; Lo et al., 2010). The InMotion2 is a 2-DOF robot that
assists planar pointing movements of the shoulder and elbow
(Fig. 1). A key feature is low intrinsic end-point impedance, made
possible by direct drive DC motors at the base of the device that
drive a linkage mechanism that can apply force at the end effector
in any direction within the horizontal plane. For rehabilitation,
active control is impedance based, whereby the robot minimally
interferes with normal movement and applies assistance only
when needed to complete tasks. The InMotion2 can also be used
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to quantify motor impairments in patient populations (Bosecker
et al., 2010; Finley et al., 2009).

However, these applications are hindered by the fact that
even low-impedance robots can alter the neural control strate-
gies employed during natural movements outside of the robot.
Campolo and colleagues showed that in a wrist pointing task, sub-
jects solve the redundancy problem by using intrinsic or “neural”
constraints that restrict wrist rotations to subject-specific 2D sur-
faces within the wrist’s 3D configuration space (Campolo et al.,
2009). When a hand performs the same task attached to a low-
impedance robot, the 2D surfaces are perturbed by the non-zero
impedance of the robot, leading to surfaces that were remarkably
consistent from trial to trial and between subjects. Importantly,
if the robot impedance is reduced with a force control algorithm,
subject-specific 2D surfaces reappeared (Tagliamonte et al., 2011).
In terms of rehabilitation, the robot impedance results in an artifi-
cial haptic environment during robotic training, which may  inhibit
recovery of efficient movement strategies and limit performance
gains outside of the robot.

The InMotion2 and other similarly designed robots are also
extensively used in motor adaptation studies whereby the robot
applies novel force fields to the arm, and over repeated movement
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Fig. 1. Top-down drawing of InMotion2 robot with locations of targets. The
mass (kg), moment of inertia (kg m2), proximal link to center of mass dis-
tance (m), and length (m)  of links 1–4 are: m1 = 1.3936, m2 = 0.8143, m3 = 0.7138,
m4 = 1.5394; I1 = 0.03346, I2 = 0.00465, I3 = 0.01777, I4 = 0.05770; lc1 = 0.1021,
lc2 = 0.0728, lc3 = 0.2032, lc4 = 0.2461; l1 = 0.4063, l2 = 0.1523, l3 = 0.4064, l4 = 0.1524.

trials, one can study the sensorimotor processes associated with
implicit adaptation to the novel environment (Hwang et al., 2006;
Huang et al., 2010; Schabowsky et al., 2007, 2008; Scheidt and
Stoeckmann, 2007). In these applications, the end point force
applied by the robot is often controlled open loop and based solely
on the Jacobian that relates end point force to the motor torques. In
these cases, low intrinsic impedance is critical to achieve accuracy
in the applied forces. However, most studies ignore the magnitude
and anisotropy of the intrinsic impedance of the robot. This could
be problematic in cases where data from left and right arms are
pooled together or compared, and when movements in different
directions are compared.

In this study we quantified the intrinsic impedance of the
InMotion2, and developed a compensation algorithm to reduce
the impedance felt by the subject during use of the robot. The
dynamic equations of motion of the robot were derived and a
feedforward compensation scheme was implemented whereby the
algorithm commands the robot motors to generate torques real-
time to compensate for inertial and velocity-dependent forces that
would normally be felt by the user during dynamic movements.
Successful implementation is heavily dependent on the accuracy
of real-time calculation of velocities and accelerations of the robot
links. Two methods for digital differentiation of the robot encoders
were tested, including a novel method involving use of a least
squares polynomial fit of recent data at each time step. Perfor-
mance of the algorithms were tested by measuring the robot-user
interaction forces during fast reaching movements.

2. Materials and methods

2.1. InMotion2 dynamics

The Euler–Lagrange approach was  used to derive the inverse
dynamics equations for the InMotion2 (Fig. 1).[
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mi, Ii, lci, li are respectively, the mass, moment of inertia, distance
from proximal link to center of mass, and length of link i (i = 1–4).
These mechanical properties were available from the manufac-
turer. We also confirmed the mass and center of mass location of
each link after disassembling the robot linkage. Moment of iner-
tia can also be estimated using the pendulum method (Dowling
et al., 2006). �k and qk are the torques and angular displacements
of the two  motors (k = 1–2). sk = sin(qk) and ck = cos(qk). The sub-
ject moves the robot handle and consequently changes the angular
displacements, velocities and accelerations of the robot links. At
each time step, the motor torques were calculated using Eq. (1)
and commanded at the motors to compensate for the dynamics of
the robot.

2.2. Software algorithms

Control software for the robot was  written in Matlab Real Time
Workshop and XPC-Target (Mathworks Inc., Natick, MA,  USA). Two
approaches for calculating the real-time angular velocities and
accelerations were coded. A commonly used backward difference
method was  implemented. For velocity, the difference between
the previous and current angles was  divided by the sample period
and filtered with a second-order Butterworth filter (cutoff fre-
quency = 31 Hz). The cut-off frequency was  empirically chosen by
reducing it until chatter during robot operation was not percepti-
ble. A similar procedure on the velocity profile was  used to calculate
accelerations.

A second approach was  developed based on estimating the
quadratic curve that best fits the most recent portion of angle data,
and calculating the current derivative directly from the quadratic
equation. The effects of noise are minimized by the fitting proce-
dure, eliminating the need for any further filtering of the signal. The
equations that define the best quadratic curve were derived using
standard least squares methods. Briefly, we  fit a portion of the angle
profile to the following equation:

u = a0 + a1t + a2t2

a0, a1, and a2 are the quadratic coefficients, and u is the angle profile.
For n time points, the least squares criteria requires minimizing the
following quantity:
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