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� We  present  a novel  method  for  the  causal  analysis  of high-dimensional  time  series.
� This  method  combines  factor  models  and  Granger  causal  analysis.
� An application  is  the  detection  of epileptic  seizure  onset  zone  based  on  ECoG  data.
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a  b  s  t  r  a  c  t

Granger  causality  is a useful  concept  for studying  causal  relations  in  networks.  However,  numerical
problems  occur  when  applying  the  corresponding  methodology  to high-dimensional  time  series  showing
co-movement,  e.g.  EEG  recordings  or economic  data. In  order  to deal  with  these  shortcomings,  we propose
a novel  method  for the  causal  analysis  of  such  multivariate  time  series  based  on Granger  causality  and
factor models.  We present  the  theoretical  background,  successfully  assess  our methodology  with the  help
of  simulated  data  and  show  a potential  application  in  EEG  analysis  of  epileptic  seizures.

© 2013 Elsevier B.V. 

1. Introduction

1.1. Motivation

In many cases the problem of identification of the dependence
structure in multivariate time series arises. This is important, for
example, in biology and economics, and in particular for neuro-
science data, e.g. electroencephalographic (EEG) data, where the
connections between brain regions are analyzed.

Investigations of this kind have been conducted in several ways,
which include (Formisano et al., 2008; Astolfi et al., 2005; Pereda
et al., 2005; Möller et al., 2001; Cassidy and Brown, 2002; Gates
et al., 2010).

The focus of this paper will be on the detection of Granger causal-
ity in multivariate time series which show strong co-movement,
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i.e. high correlation between the component-series. In Granger
(1969) the causality between two time series is analyzed. The
idea of this causality concept is based on predictability: if the
knowledge of the past of one time series improves the predic-
tion of a second one, the first is said to be Granger causal for
the second. Note that this specific definition is just one possible
way among many of defining causality. We  refer the interested
reader to Bressler and Seth (2011) for background information on
Granger causality and to Pearl (2000) for a historical overview of
causality.

Multivariate extensions of this causality concept have been
developed, for recent references see e.g. Lütkepohl (2007) or Eichler
(2007). Besides, various topics of Granger causality have been dis-
cussed, see e.g. Sims (1972), Geweke (1982), Dhamala et al. (2008),
Barnett and Seth (2011) and Marinazzo et al. (2011).  For recent
applications in neuroscience see e.g. Guo et al. (2008), Liao et al.
(2010), Sommerlade et al. (2012) and Flamm et al. (2012).

In practice we  often encounter high-dimensional time series,
which show co-movement. As this co-movement normally gener-
ates numerical problems, the question arises how to investigate the
causality structure of these data.
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For the analysis of highly correlated data, such as EEG data, fac-
tor models are a useful tool, see e.g. Molenaar and Nesselroade
(2001) and Molenaar (1985).  The idea behind factor models is the
separation of the observations into latent variables (describing the
co-movement) and noise. The latent variables are described by a
small number of factors. In this modeling approach, up to now
causality was  not considered.

In this paper we propose a methodology for the causal analysis
of high-dimensional co-moving data, by combining factor mod-
els and Granger causality analysis. We  will present the theoretical
background as well as an application to simulated data and to EEG
recordings.

This paper is structured as follows: in order to get a grasp of
Granger causality and factor models, we give a short introduction
to both topics in the remainder of this section. In Section 2 we apply
Granger causality to factor models and discuss the challenges aris-
ing. In Section 3 we propose a methodology for this kind of analysis.
We apply this methodology to simulated and EEG data and present
the results in Section 4. This paper is concluded in Section 5.

1.2. Mathematical background and notation

In this paper we distinguish between two different types of
processes. In the classic Granger causal analysis we investigate
n-dimensional stochastic processes (y(t))t∈Z generated by n com-
ponents, as discussed in this section. In the factor model case we
analyze n-dimensional stochastic processes (x(t))t∈Z, whose latent
variable process is generated by a small number of components, as
discussed in Section 1.5. For notational purposes we  simply write
y when referring to the whole stochastic process (y(t))t∈Z, this also
applies for all other processes.

For the classic Granger causal analysis, we consider an n-
dimensional stochastic process (y(t))t∈Z, y(t) :  ̋ → R

n, which is
weakly stationary with mean zero. We  refer to Hannan and Deistler
(2012) and Brockwell and Davis (1991) for treatment of time series.

In this paper we only consider linearly regular processes, which
admit a Wold representation, see Rozanov (1967) and Hannan
(1970). The covariance function of y is given by �(s) = E y(t + s)y(t)′.
For the remainder of the paper we assume, that

∑
‖ �(s) ‖ < ∞ holds

and that the spectral density

f (�) = 1
2�

∞∑
s=−∞

�(s)e−i�s (1)

is uniformly bounded above and below, i.e. there exists a real con-
stant c such that1

c−1In ≤ fyy(�) ≤ cIn for all � ∈ [−�, �] (2)

holds. According to Wiener and Masani (1957),  this assumption
yields that y(t) has an AR(∞)  representation

∞∑
m=0

A(m)y(t − m)  = ε(t) (3)

where A(m) ∈ R
n×n,

∑∞
m=0‖A(m)‖2 < ∞ and A(0) = In holds. The

right-hand side ε(t) is white noise, i.e. E ε(t) = 0, E ε(s)ε(t)∗ =
ıst˙,  and  ̇ denotes its positive definite covariance matrix. We
additionally assume that even

∑∞
m=0‖A(m)‖ < ∞ holds.

We use z to denote the backshift operator on Z:  z(y(t)|t ∈ Z)  =
(y(t − 1)|t  ∈ Z), as well as a complex variable. Using this notation
we may  rewrite Eq. (3) as

a(z)y(t) = ε(t), (4)

1 In this context A < B means that B − A is a positive definite matrix.

where a(z) =
∑∞

m=0A(m)zm exists inside and on the unit circle.
We  additionally assume that the stability condition det a(z) /= 0

for |z| ≤ 1 holds.
By using ã(z) = −

∑∞
m=1A(m)zm we  rewrite (4) as

y(t) = ã(z)y(t) + ε(t). (5)

The transfer function k(z) = a−1(z) =∑∞
m=0K(m)zm exists inside

and on the unit circle. There is a unique weakly stationary solution
of (3) of the form

y(t) =
∞∑

m=0

K(m)ε(t − m) = k(z)ε(t) (6)

This solution (6) of the system (3) is called an autoregressive (∞)
process. It corresponds to the Wold representation. For the sake of
simplicity of notation we  will skip the (∞) sign henceforth.

For a stationary process z, let z(t) = closure(span(z(s)|s ≤ t))
denote the space spanned by the past and present of z in the Hilbert
space of all square integrable random variables. Time t represents
the present unless noted otherwise.

Note that, if (2) holds for the whole process, it also holds for all
sub-processes, and therefore all subprocesses have AR representa-
tions.

Due to the nature of our application, we  will often refer to their
components as channels in this paper.

1.3. Granger causality

There have been long and thorough discussions about causal-
ity throughout the last decades, a brief summary can be found in
Pearl (2000).  As already stated various ideas exist how to formal-
ize causality. The definition we will use for our causal investigation
is Granger causality, as introduced in Granger (1969),  based on a
suggestion in Wiener (1956).

According to the original definition in Granger (1969),  we say a
time series y1 is causing another time series y2, denoted by y1 → y2,
if we  are able to predict y2 better using all available information in
the universe than using all information apart from y1.

Granger’s definition is based on the decrease of the variance of
the (linear least squares) prediction error. For a better understand-
ing we present an equivalent definition of Granger causality based
on the autoregressive coefficients for the bivariate case.

1.3.1. Definition of bivariate Granger non-causality
Let y(t) = (y1(t), y2(t))′ satisfy the assumptions of Section 1.2,

then we consider the joint AR representation (5) at time point t + 1.(
y1(t + 1)

y2(t + 1)

)
= ã(z)

(
y1(t + 1)

y2(t + 1)

)
︸ ︷︷  ︸

+
(

ε1(t + 1)

ε2(t + 1)

)
(7)

⎛
⎜⎜⎜⎜⎝

∞∑
m=1

A11(m)y1(t + 1 − m)  +
∞∑

m=1

A12(m)y2(t + 1 − m)

∞∑
m=1

A21(m)y1(t + 1 − m)  +
∞∑

m=1

A22(m)y2(t + 1 − m)

⎞
⎟⎟⎟⎟⎠ .

We say that y1 is Granger non-causal for y2 if A21(m) = 0 ∀ m (i.e.
ã21(z) = 0). In other words y1(t) does not influence the prediction
of y2(t + 1).

Otherwise we say y1 is Granger causal for y2. In this case the
knowledge of the present and past of y1 improves the prediction
of y2(t + 1), i.e. the variance of the prediction error is smaller when
using the past and present of both y1 and y2 compared to using only
the past and present of y2 itself.
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