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Dithering is the process of intentionally adding artificially generated noise to an otherwise uncorrupted
signal to actually improve the performance of an end overall system. This article demonstrates that a
dithering procedure can be used to improve the performance of an EEG interictal spike detection algo-
rithm. Using a previously reported algorithm, by adding varying amounts of artificially generated noise to
the input EEG signals the effect on the algorithm detection performance is investigated. A new stochastic
resonance result is found whereby the spike detection performance improves by up to 4.3% when small
amounts of corrupting noise, below 20 wVgus, are added to the input data. This result is of use for improv-
ing the detection performance of algorithms, and the result also affects the dynamic range required for
the hardware implementation of such algorithms in low power, portable EEG systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The interictal (inter-seizure) spike is an important feature of the
epileptic scalp EEG: its presence aids the diagnosis of epilepsy and
the localisation of the epileptic focus (Chatrian et al., 1974; Smith
and Wallace, 2001). However, visual inspection of long duration
EEG recordings to identify spikes is time consuming and subject
to variations between interpreters. As a result there has been a
large amount of research interest in the creation of automated spike
detection algorithms. Casson et al. (2009) lists 70 such papers while
Halford (2009) and Harner (2009) provide recent performance
reviews. Despite this high level of interest however a definitive
detection solution has not been found. It is clear that the task of find-
ing a clinically acceptable trade-off between the number of events
correctly detected and the number of false detections is non-trivial.

Simultaneously, in recent years there has been a large amount of
interest in the development of miniaturised, wearable EEG systems
for prolonged ambulatory monitoring that incorporate real-time
signal processing algorithms (Casson and Rodriguez-Villegas, 2009,
2011; Yazicioglu et al., 2008, 2011; Casson et al.,2010; Verma et al.,
2010; Kelleher et al., 2009; Tolbert et al., 2009). These systems aim
to carry out an automated analysis of the EEG on the portable EEG
device itself such that only the results of the real-time analysis need
to be recorded, not the entire EEG signal. Real-time data reduction
is therefore provided and in turn this can be utilised to reduce the
overall power consumption of the EEG unit, reducing the EEG unit
size and increasing wearability. This is provided that the implemen-
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tation of the real-time signal processing algorithm itself consumes
very little power (Casson et al., 2010).

In this article we propose utilising noise to improve the perfor-
mance of an interictal spike detection data reduction algorithm in
terms of both detection performance and hardware requirements.
This is achieved through dithering, as illustrated in Fig. 1, where
an artificially generated noise signal is intentionally added to the
normal EEG signal before it is passed to the detection algorithm.
Using a previously reported algorithm we demonstrate a new result
whereby the algorithm performance actually improves in the pres-
ence of small amounts of introduced noise. This result can then
be linked to the dynamic range, and hence power consumption,
required to implement the algorithm in hardware. Both of these
results are obtained without making any changes to the underlying
detection algorithm itself.

2. Methods
2.1. Procedure

Based upon Fig. 1, the analysis presented here uses an existing,
unmodified, spike detection algorithm (see Section 2.2) and adds
an artificially generated noise signal to the raw recorded EEG before
it is passed to the algorithm for analysis. The artificial noise signal
has an instantaneous voltage v,(t), Root-Mean-Square (RMS) value

\/é, and Power Spectral Density (PSD) S(f). The aim of the anal-

ysis considered here is to asses the performance of the algorithm,
in terms of the trade-off between the number of events correctly
detected and the number of false detections, at different values of

\/E. In addition, two different models for the PSD S(f) are investi-
gated (see Section 2.3).
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Fig. 1. Dithering uses an input referred additive noise source (dither signal) to arti-
ficially corrupt an EEG recording before it is passed to a spike detection algorithm.
By varying the RMS amplitude of the noise introduced the effect on the algorithm
detection performance can be investigated. Here the artificial noise source has an
instantaneous value v,(t) and power spectral density S(f).

2.2. Unmodified interictal spike detection algorithm

The interictal spike detection algorithm used here is that
reported in detail in Casson and Rodriguez-Villegas (2009) and it
is summarised in Fig. 2. The algorithm is simulated here in MATLAB
and is ultimately intended for low power, online use in portable EEG
units to provide real-time data reduction achieved through discon-
tinuous recording (Casson et al., 2010). In this approach the EEG
is only recorded when the detection algorithm detects a candidate
interictal spike.! By recording a short section of EEG data around
each detection, and discarding all other EEG sections, real-time data
reduction is achieved.

With reference to Fig. 2, the algorithm operates by analysing
each EEG channel independently with a user set detection thresh-
old B available to control the algorithm operation. Route A through
the algorithm normalises § to a value zf to correct for broad level
amplitude differences in different EEG traces and channels. Route
B then extracts EEG frequency content around 8.4 Hz and uses this
to determine whether a candidate spike is present by perform-
ing the comparison: |Cs | >z8? Route C provides a simple rule to
reject artefacts and incorrect detections by ensuring that the nor-
malised power in the signal band (Cs) is larger than the normalised
power in an artefact band: |Cs| > | Gy |? If this condition is satisfied a
detection flag is raised and a section of EEG data marked for record-
ing with all non-marked EEG sections being discarded. A memory
buffer is used to allow recording of EEG data from before and after
a detection. Finally, algorithm route D is present to pass the input
EEG data for recording, correcting for an inherent delay present in
the other algorithm routes.

The algorithm arrangement used in this article is identical to that
used in Casson and Rodriguez-Villegas (2009). Ten EEG channels
(F7,F8, Fp1, Fp2, 01, 02, T3, T4, T5, and T6) are analysed in parallel
with detections in multiple channels combined so that a detection
in any one causes all of the channels to record a window of EEG data.
The analysis in Casson and Rodriguez-Villegas (2009) is equivalent

to the case for which E = 0 wVRuis: the case where no corrupting
noise is added to the EEG data.

2.3. Artificial noise signal generation

Multiple methods for generating the artificial noise time series
vp(t) are possible, and two methods with differing PSDs are used
in this work. Firstly a white Gaussian noise model, with a uniform
(flat in the frequency domain) PSD, is used. This noise, with RMS

amplitude 4/ v2, is generated in the time domain using the MATLAB
wgn function. To ensure sampling frequency independent opera-

1 This article treats all interictal events, such as spikes, sharp waves, and
spike-and-waves, under the umbrella term spikes. No analysis of seizure data is
considered.

tion all noise signals are generated assuming a 100 Hz sampling
frequency, giving noise present over a 50 Hz bandwidth. The time
series is then up-sampled to match the EEG sampling frequency
before being added to the EEG trace. An example resulting signal is
illustrated in Fig. 3(a) for a single EEG channel. It can be seen that
the artificial noise added to the EEG corrupts the baseline record-
ing. The noise itself has a uniform spectrum up to 50 Hz and at low
frequencies the EEG signal dominates over the noise.

The second noise model has a flicker distribution, where the PSD
has a 1/frequency 10dB per decade roll-off. The flicker noise time
series is generated by shaping white Gaussian noise produced as
above to have a 1/f PSD using the noise shaping filter defined in
Kasdin (1995) and MathWorks (2007). An example resulting signal
is illustrated in the time and frequency domains in Fig. 3(b).

2.4. Performance metrics

The algorithm performance is analysed via the trade-off
between the two performance metrics of interest as the detection
threshold g is varied. For real-time use a fixed value of § must be
selected a priori, but analysing multiple values here allows the key
performance trade-off to be investigated, and the user can then use
this information to select the wanted operating point.

The first performance metric, the sensitivity, gives the percent-
age of expert marked spike events that are correctly recorded:

number of correct detections

total number of marked events 100. (M

Sensitivity (%) =

The second performance metric, the percentage of data transmit-
ted, quantifies the amount of data reduction achieved. This metric
is used over the false detection rate to be in-line with the intended
data reduction role of real-time signal processing algorithms in
portable EEG systems and to allow direct comparison with the
results in Casson et al. (2009) and Casson and Rodriguez-Villegas
(2009). The percentage of data transmitted is calculated assum-
ing that 5s of EEG data are recorded (2.5s before and after) in
response to each automated detection from the algorithm. For good
algorithm performance high sensitivity and low percentage of data
transmitted should be achieved.

The two performance metrics are generated by running the
algorithm multiple times following the procedure detailed in
Table 1. Eight different detection thresholds, equally spaced apart at
B%={0.2-0.9} are used with a different trade-off between the sensi-
tivity and percentage of data reduction transmitted being achieved
for each different § value. This trade-off is then plotted on ROC-like

results curves (Casson et al., 2009) in Section 3. Five values for \/é
between 0 and 40 wVgys are utilised so that the trade-off in per-
formance is also analysed for different levels of introduced noise.
This procedure is repeated separately for the two PSD noise models
considered.

2.5. EEG data

The algorithm is tested by analysing a set of scalp EEG records
containing expert marked interictal events. The EEG data used is
summarised in Table 2 and is identical to data set B used in Casson
et al. (2009). A total of 764 expert marked interictal events are
present in 16:36:16 h of recordings from 5 patients split into 10
records. A spike is deemed to be correctly recorded if there is a
detection within 2 s of an expert marking.

All EEG data uses a referential montage (FCz reference) and is
high pass filtered (first-order, 0.16 Hz cut-off) before the artificial
noise is added and it is passed to the detection algorithm. EEG sam-
pling rates vary between 200 and 256 Hz and the implemented
algorithm is independent of this.
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