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a  b  s  t  r  a  c  t

Brain  oscillations  constitute  a prominent  feature  of  electroencephalography  (EEG),  in both  physiological
and  pathological  states.  An  efficient  separation  of  oscillation  from  transient  signals  in  EEG is  important
not  only  for  detection  of  oscillations,  but  also  for  advanced  signal  processing  such  as  source  localization.  A
major difficulty  lies  in  the fact that filtering  transient  phenomena  can  lead to spurious  oscillatory  activity.
Therefore,  in  the  presence  of a mixture  of  transient  and  oscillatory  events,  it is  not  clear  to which  extent
filtering  methods  are  able  to separate  them  efficiently.

The  objective  of  this  study  was  to evaluate  methods  for  separating  oscillations  from  transients.  We  com-
pared  three  methods:  finite  impulse  response  (FIR)  filtering,  wavelet  analysis  with  stationary  wavelet
transform  (SWT),  time–frequency  sparse  decomposition  with  Matching  Pursuit  (MP).  We evaluated
the  quality  of reconstruction  and  the  results  of  automatic  detection  of oscillations  intermingled  with
transients.  The  emphasis  of  our  study  was  on epileptic  signals  and  single  channel  processing.

In both  simulations  and  on real  data,  FIR  performed  generally  worse  than  the  time–frequency  methods.
Both  SWT  and  MP showed  good  results  in  separation  and  detection,  each  method  having  its  advantages
and  its  limitations.  The  SWT  had  good  results  in  separation  and  detection  of  transients  due  to  the  time
invariance  property,  but  still  did  not  completely  resolve  the  frequency  overlap  for  the  oscillation  dur-
ing  the  time–frequency  thresholding.  The  MP  provides  a sparse  representation,  and  gave  good  results
for  simulated  data.  However,  in the  real  data,  we  observed  distortions  introduced  by  the  subtractive
approach,  and  departure  from  dictionary  waveforms.  Future  directions  are  proposed  for  overcoming
these  limitations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Electrophysiological brain signals recorded in EEG and MEG
consist in a complex mixture of patterns reflecting activation
of multiple neuronal networks. Some patterns are transient, i.e.,
sharp brain waves lasting only one or two cycles, while other
consist in sustained oscillations. Examples of sharp transients are
early evoked potentials in primary somatosensory regions recorded
in intracerebral EEG (Krieg et al., 2010; Liegeois-Chauvel et al.,

Abbreviations: AUC, area under the curve (of the ROC); DWT, discrete wavelet
transform; FIR, finite impulse response filter; FO, foramen ovale recording; MP,
Matching Pursuit; MF,  matched filter; MMP,  multichannel Matching Pursuit; ROC,
receiver operating characteristic; SWT, stationary wavelet transform.
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1991; Tallon-Baudry et al., 2005), or interictal spikes in epilepsy.
Examples of physiological oscillatory patterns are theta, alpha
and gamma  rhythms. In epilepsy, cortical oscillations have been
recorded in temporal lobe in the gamma  band (Uchida et al., 2001;
Hirai et al., 1999). At higher frequencies, epileptic ripples have been
reported in intracerebral EEG (Bragin et al., 2002; Worrell et al.,
2008) or in foramen ovale recordings (Clemens et al., 2007). Oscil-
lation and transient may  occur together, or in some cases can be
directly linked though phase reset processes (Krieg et al., 2010).

The investigation of these patterns requires being able to char-
acterize finely their spatio-temporal characteristics, which is not
straightforward. In particular, a major difficulty lies in the fact
that the frequency bands of transient and oscillatory activities
may  overlap. Indeed, it has been shown that filtering a transient
with a classical bandpass filter leads to spurious oscillations or
“false ripples” (Bénar et al., 2010). Therefore, in the presence of
intermingled transient and oscillatory events, it is not clear to
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which extent filtering methods are able to separate efficiently these
events.

An efficient separation is important for two aspects. The first
aspect is the detection of oscillations, as a method sensitive to
transients would induce false detections. The second aspect is the
localization of the actual generators of oscillations with source
localization methods without contamination by transients.

Several methods are available for the separation of activities
in the frequency, time-scale or time–frequency domains (Mallat,
1989). These methods can be qualified by different aspects: linear-
ity, adaptivity, and translation invariance.

The objective of this study was to quantify the capacities of
different methods in separating oscillations from transients. We
compared three methods: classical FIR filtering (linear, transla-
tion invariant), wavelet filtering with stationary wavelets (mixed
approach), time–frequency sparse decomposition with Matching
Pursuit (non linear, fully adaptive). We  evaluated the quality of
reconstruction of each event and the ability to detect oscillations
intermingled with transients. Our emphasis was on single-channel
processing.

In the first section, we describe the different separation meth-
ods, the simulated and real datasets. In the second section, we
present the results obtained for both simulated and real data
in terms of reconstruction accuracy, topography and localization
results, and detection capacities. In the last section, we  present
conclusions and future directions.

2. Materials and methods

2.1. Signals

2.1.1. Simulations
The simulated datasets consisted in a mixture of transient sig-

nals (triangular waves) and oscillations with Gaussian envelope
(Bénar et al., 2010). The parameters of the waves were in part
inspired from our real signals. The time window was 300 ms,  and
the sampling frequency 1000 Hz. Across simulations, we  varied sev-
eral parameters: width of transient, frequency of the oscillation,
relative amplitude of transient versus oscillation, signal to noise
ratio. The range of parameters was inspired from our real signals.
The triangle width was either 5 ms  or 20 ms.  The oscillation fre-
quency was 10, 30, 45, 90 or 200 Hz. The width of the oscillation
corresponded to a � of 8 (implemented as a fractional bandwith of
3 in the gauspuls Matlab function). The relative amplitude of the
transient with respect to the oscillation was 1, 3, 5, 10 or 20. The
time of occurrence of the transient was varied with equal steps
across the time window of the oscillation, with five configurations.
Background EEG activity was obtained from a neural mass model
(Wendling et al., 2000) to ensure a physiologically plausible 1/f
spectrum. The SNR, computed as 10 × log 10 (signal energy/noise
energy), was varied between −20 dB and 20 dB. A set of 25 noise
realizations were generated for each SNR.

The construction of simulated signals and all signal process-
ing were performed with the Matlab software (Mathworks, Natick,
MA), with the help of the EEGLab toolbox (Delorme and Makeig,
2004).

2.1.2. Real signals
Real signals consisted in simultaneous foramen ovale (FO) and

scalp EEG recordings. FO electrodes are invasive and record at the
base of the brain (Zumsteg et al., 2005; Daskiewicz et al., 2009).
FO electrodes permit to record epileptic fast activity from mesial
and basal temporal brain structures, with high signal to noise ratio.
Simultaneous recordings permit to test the capacities of methods
for recovering non-invasively the oscillations.

These recordings were performed during presurgical assess-
ment of a patient (female, 18 years old) with pharmacoresistant
right medial temporal lobe epilepsy. Four hours of simultaneous
FO and scalp EEG recordings were analyzed. Scalp recording con-
sisted in 19 surface electrodes according to the 10–20 international
system plus 4 temporo-basal electrodes (FT9, FT10, P9, and P10).
All electrodes were referenced to FPz. Signals were recorded using
BrainAmp amplifier system and BrainVision Recorder software
(Brain Products Gmbh, Munich), with an online digital band-pass
filter (0.15–200 Hz), digitized at a rate of 1 kHz. Epileptiform oscil-
lations and transient were detected visually on the FO electrodes
with help from an experienced electroencephalographer (M.G.).

2.2. Filtering methods

2.2.1. Finite impulse response filter (FIR)
The finite impulse response (FIR) filter is a linear, time-invariant

method. The filter is defined by a difference equation:

f (t) = b0s(t) + b1s(t − 1) + b2s(t − 2) + · · ·bNs(t − N) (1)

where t is the sample number, s(t) is the input signal, f(t) is the
output (filtered) signal, bi, i = {1. . .N} are the filter coefficients, and
N is the filter order. For off-line analysis, a simple way  to find
the coefficients is the Windowing Method. This consists of trun-
cation of the sinc function with a temporal window, to obtain a
finite impulse response (FIR) approximation of the ideal filter. In
our case the Kaiser window was  used because it provides minimal
artificial oscillations (Bai et al., 2004; Cherif et al., 2008). The for-
mulae provided by Kaiser (1974) permits to design the order N and
shape parameter  ̌ of the Kaiser window that best approximate
the desired passband and stopband frequencies (Fp and Fs, respec-
tively) as well as the passband ripple and stopband attenuation (Rp
and Rs, respectively) (matlab function kaiserord).

The passband ripple level was  set to Rp = 3%, the attenuation
Rs = 30 dB (depend on the passband ripple Rp). Two  filters were
designed, one bandpass for the oscillation and one bandstop for
the transient, resulting in two impulse responses (Kaiser Matlab
function) and filter parameters (fir1 matlab function). Signals were
filtered both forward and backward in order to eliminate latency
shifts in the filtered signals (filtfilt Matlab function).

The bandpass frequencies were set to 8–11 Hz, 24–33 Hz,
35–50 Hz, 78–99 Hz, and 160–220 Hz.

2.2.2. Stationary wavelet transform (SWT)
A second option for separating oscillations and transient signals

is wavelet (or time-scale) filtering by masking. The general princi-
ple of such filtering is to delineate the extent of the signal of interest
in the time-scale plane (i.e., a binary mask) and to reconstruct only
the selected coefficients. In this study, we use one particular type of
invertible time–frequency transform, the stationary wavelet trans-
form (SWT). The main advantage of SWT  is its time-invariance
property (Torrésani, 1995; Wang et al., 2003), in contrast with the
discrete wavelet transform (DWT). The SWT  has been shown to
be useful in many applications like break down points detection
and denoising (Dai et al., 2004). Generally, the redundancy of this
transform facilitates the identification of salient features in a signal.

In the SWT, at each scale j and time step k the signal s(t) is
projected on the scaling function �, dilated and translated:

cj, k =
〈
s(t), �j, k(t)

〉
(2)

�j, k(t) = 2−j�(2−j(t − k)) (3)
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