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In the last years, dynamic causal modeling has gained increased popularity in the neuroimaging com-
munity as an approach for the estimation of effective connectivity from functional magnetic resonance
imaging (fMRI) data. The algorithm calls for an a priori defined model, whose parameter estimates are
subsequently computed upon the given data. As the number of possible models increases exponentially
with additional areas, it rapidly becomes inefficient to compute parameter estimates for all models in
h . order to reveal the family of models with the highest posterior probability. In the present study, we
Dynan.mc caus.al modeling developed a genetic algorithm for dynamic causal models and investigated whether this evolutionar
Genetic algorithm p g g y . & R . . .y
MRI approach can accelerate the model search. In this context, the configuration of the intrinsic, extrinsic
and bilinear connection matrices represents the genetic code and Bayesian model selection serves as a
fitness function. Using crossover and mutation, populations of models are created and compared with
each other. The most probable ones survive the current generation and serve as a source for the next
generation of models. Tests with artificially created data sets show that the genetic algorithm approxi-
mates the most plausible models faster than a random-driven brute-force search. The fitness landscape
revealed by the genetic algorithm indicates that dynamic causal modeling has excellent properties for
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1. Introduction

Dynamic causal modeling is a general framework for infer-
ring processes and mechanisms at the neuronal level from the
measurement of brain activity with different imaging techniques,
for example, functional magnetic resonance imaging (fMRI). With
increasing computational power and the continuing extension of
dynamic causal modeling (Stephan et al., 2009), it became afford-
able to test a multitude of dynamic causal models (DCMs) across
subjects automatically. Thereby, the characteristics of a perceptu-
ally driven network can be described more as common properties
underlying a family of DCMs with similar posterior probability
rather than through a single DCM (Penny et al., 2010). However,
as the number of possible dynamic causal models exponentially
increases with each additional brain area and with each additional
extrinsic input, a systematic brute-force search through the whole
space of DCMs is computationally inefficient. Therefore, we ana-
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lyzed the applicability of genetic algorithms (GAs) to accelerate the
search for the most plausible DCMs.

GAs are based on the idea of evolution and mimic natural
processes, such as mutation, recombination and selection of indi-
viduals in an artificial environment. The first described procedure,
which included all of the essential elements of GAs, was pub-
lished by Bremermann (1962). During the 1960s and 1970s, GAs
became increasingly popular due to the work of Rechenberg and
Schwefel, who solved complex problems by applying evolutionary
approaches (Rechenberg, 1973; Schwefel, 1974).

GAs are used for optimization problems with a complex fit-
ness landscape, for instance, NP-complete problems such as the
knapsack problem (Kellerer et al., 2004). In addition, GAs are often
applied in bioinformatics or physical research to get approxima-
tions in adequate time. In bioinformatics, GAs are used, for instance,
in peptide and protein design (Gronwald et al., 2008; Suarez et al.,
2010).

The basis of a GA is a population of solutions and a fitness func-
tion. The fitness function is used to evaluate the solutions, often
called individuals or chromosomes, and the next generation is built
by applying different selection methods such as stochastic uni-
versal sampling or tournament selection (Baker, 1987; Goldberg
and Deb, 1991). Additionally, genetic operators, mutation and
crossover, can be applied to increase the so-called gene pool. While
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mutation only changes small parts of the chromosome, cross-
over leads to a combination of two or even more parents to a
novel offspring. The selection method decides which individuals are
transferred into the next generation and which are discarded. This
procedure is repeated until a termination condition, for instance, a
fixed number of generations, has been reached.

In the context of dynamic causal modeling, the configuration of
the connectivity matrices A, B and C represents the genetic code of
anindividual and the posterior model probability serves as a fitness
function. In the current study, we propose a genetic algorithm for
dynamic causal modeling and test whether the algorithm is able to
find plausible DCMs faster than a brute-force search. On the basis
of these results, we reveal the properties of the fitness landscape of
DCMs that support the usage of GAs.

2. Methods

In fMRI studies, the search for the most plausible DCM is
typically constrained by a priori assumptions about the effective
connectivity of the selected areas. The remaining space of possible
network configurations can subsequently be browsed for the best
model (Penny et al., 2010). As the general search principles of GAs
are the same for constrained and unconstrained DCMs, we decided
to use in the present study the whole space of possible network
configurations to investigate the performance of the evolutionary
approach.

Our genetic algorithm works as follows: at first, randomly cho-
sen connectivity matrices that define the intrinsic connections,
the bilinear modulatory connections, and the driving inputs are
transformed into a single vector representing the binary genetic
code of a DCM. Three derivatives of this code were generated by
changing eight randomly chosen bits in the vector. These four
genetic codes are used to start the iterative GA. First, a popula-
tion of 20 DCM codes is created, comprising of the four original
chromosomes and 16 chromosomes that are the result of muta-
tion and crossover between the four initially created chromosomes.
Crossover is accomplished by randomly choosing two codes and
two crossover points that determine the part of the code that
is replaced by the information of the second code. Mutation is
applied on each new code with a probability of 50%, which changes
two to eight randomly selected bits within the chromosome. The
configuration of matrix B depends on the selected connections of
matrix A. Therefore, all impossible bilinear connections in matrix
B are deleted. Furthermore, a routine checks whether a created
model exists already in the current or in any generation before.
If this is the case, the algorithm generates another model until a
unique one has been found. Subsequently, all codes are transformed
back to the DCM format and are estimated with SPM8 software
(http://www.fil.ion.ucl.ac.uk/spm/). Bayesian model selection, as
implemented in SPM8, serves as fitness function to create a rank-
ing for all estimated DCMs (Penny et al., 2004). Third, the best four
models enter the GA again. After 50 iterations the GA stops.

2.1. Test with artificial data sets

To analyze whether the genetic approach can optimize the
search for the most plausible DCMs, we compared it to a random
driven brute-force search. The brute-force algorithm generates
three integer values, whose binary representation is converted to
DCM matrices A, B and C, respectively, to guarantee that each DCM
configuration can occur with the same probability. For example, if
a DCM with 4 brain areas and 3 external stimuli has to be created,
matrix A consists of 12 configurable binaries (the main diagonal
elements in this matrix represent self-referential inhibitory con-
nections and are therefore fixed). That leads to 212 distinct models
for matrix A. In general, the selection of matrix A is constrained by

a priori assumptions, and thus the real number of configurations
is lower. But, as mentioned before, for a methodical comparison of
two DCM search algorithms, this constraint can be neglected.

Since the bilinear influence of stimuli depends on the previously
defined connectivity matrix A, the second randomly generated
number ranges to the number of connections that are determined
in matrix A times the number of modeled regressors. Cis a n x s-
matrix, where n is the number of brain areas and s is the number of
modeled regressors. Therefore, the binary structure of this matrix
is created by a randomly generated number between zero and 2™*5,
Thus, we ensured that each model can occur with the same prob-
ability. Again, a control routine assures that no DCM occurs more
than one time.

The brute-force algorithm creates two random models, as
described above, and compares them using Bayesian model selec-
tion. Subsequently, the better model is transferred to the next
iteration, in which another model is randomly created and com-
pared with the previously selected model using Bayesian model
selection. The algorithm terminates when the number of gener-
ated models exceeds the number of models generated by the GA
for the same data set.

To evaluate the efficiency of the GA, we created synthetic data
from two predefined DCMs. The first model consisted of three areas
and two driving inputs and contained the same intrinsic properties
and similar driving inputs as the bilinear model used for the genera-
tion of synthetic data in Stephan et al. (Stephan et al., 2008). Driving
input uq; was created as a set of delta-functions randomly dis-
tributed over 100 time points. A box-car function with two blocks
(25s duration) served as second driving input u, (see Fig. 3b in
Stephan et al., 2008). A second model was derived from this con-
figuration by adding a fourth region to the system with reciprocal
connections to area three and a directed connection from area two
to area four. For both models, synthetic data were generated with
the SPM build-in function spm_dcm_create. As suggested in Stephan
et al. (2008), we created synthetic data with a low and a high
signal-to-noise ratio (SNR=2 and SNR =5, respectively), reflecting
a relatively good signal quality, as it is usually the case in real data
due to the computation of the first eigenvariate of the time series
in a volume of interest. Overall, we generated four synthetic data
sets: for the three area model one data set with SNR=2 and one
with SNR =5, and for the four area model one data set with SNR=2
and one with SNR=5. The binary vector derived from the model
with three areas included 24 bins (6 parameters for matrix A, 2 x 6
parameters for matrix B and 2 x 3 parameters for matrix C) leading
to 224 theoretical possible models. The binary vector for the model
with four areas included 44 bins (12 parameter for matrix A, 2 x 12
parameters for matrix B and 2 x 4 parameters for matrix C) leading
to 244 theoretical possible models.

For each data set, 10 runs with the GA (each with 50 generations)
and with the brute-force search were performed starting from the
same random model for each data set, resulting in 64320 created
and estimated models. We compared both algorithms using three
different criteria: First, we determined after each run the number
of better models found by the GA and the brute-force algorithm,
respectively, compared to the initial model. Second, after all runs
on one data set, we computed the posterior model probability of
the best models found by the genetic algorithm and the brute-
force search algorithm using Bayesian model selection. Third, we
checked how many times the GA approximated to the same model
after each run.

A successful genetic algorithm has to head for the global opti-
mum and does not have to be caught in a local optimum of the
fitness landscape. To reveal the landscape of the fitness function, we
therefore determined the Hamming distance between each DCM
model and the best DCM model of each run and compared it with
its posterior-log evidence, using the negative free-energy value F
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