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a b s t r a c t

Independent component analysis (ICA) is one of the most valuable explorative methods for analyzing
resting-state networks (RSNs) in fMRI, representing a data-driven approach that enables decomposition
of high-dimensional data into discrete components. Extensions to a group-level suffer from the draw-
back of evaluating single-subject resting-state components of interest either using a predefined spatial
template or via visual inspection. FENICA introduced in the context of group ICA methods is based solely
on spatially consistency across subjects directly reflecting similar networks. Therefore, group data can
be processed without further visual inspection of the single-subject components or the definition of a
template (Schöpf et al., 2009).

In this study FENICA was applied to fMRI resting-state data from 28 healthy subjects resulting in eight
group RSNs. These RSNs resemble the spatial patterns of the following previously described networks:
(1) visual network, (2) default mode network, (3) sensorimotor network, (4) dorsolateral prefrontal
network, (5) temporal prefrontal network, (6) basal ganglia network, (7) auditory processing network,
and (8) working memory network. This novel analysis approach for identifying spatially consistent net-
works across a group of subjects does not require manual or template-based selection of single-subject
components and, therefore, offers a truly explorative procedure of assessing RSNs.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the seminal report of Biswal et al. (1995), spontaneous
fluctuations in blood oxygen level dependent (BOLD) functional
MRI (fMRI) have been repeatedly and reproducibly found to be
organized in specific functional networks, and referred to as
resting-state networks (RSNs) (DeLuca et al., 2006; Damoiseaux
et al., 2006; Zuo et al., 2010; Meindl et al., 2010; Robinson et al.,
2009). Although there is evidence for a neural basis the exact nature
of these signal fluctuations is still under discussion (Raichle et al.,
2001). Accordingly, methods for the detection of spontaneous fluc-
tuations in BOLD-weighted fMRI data sets have gained considerable
interest in investigational neuroimaging studies (for a short review
see Auer, 2008).

Currently, different approaches for identifying patterns of
coherent activity are used for the analysis of RSNs (for a review
see Cole et al., 2010). The straight-forward method for hypothesis-
driven RSN analysis is based on correlating the time course in a
certain seed region with the time courses of all other brain vox-
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els. Seed voxel definition is typically based on a priori knowledge
of functional localization, i.e. a seed voxel chosen from a motor
area will result in a functional connectivity map of functionally
connected regions within the motor network. Several studies inves-
tigating motor, visual, auditory, and even cognitive networks have
shown the applicability of this seed-based resting-state analysis
(Biswal et al., 1995, 1997; Cordes et al., 2000, 2001; Fox et al.,
2005). Seed voxel based methods, however, require strong a priori
assumptions on the expected RSNs.

In contrast, data-driven or exploratory approaches do not
require a specific prior model definition (Moser et al., 1999). Sev-
eral types of data-driven methods such as independent component
analysis (ICA) (DeLuca et al., 2006; van de Ven et al., 2004), hier-
archical clustering (Golland et al., 2008; Cordes et al., 2002), and
Laplacian clustering (Thirion et al., 2006), have already been applied
to fMRI resting-state data on the single-subject level.

Several data-driven group analysis approaches based on ICA
have been successfully introduced so far. It is, however, still under
discussion whether ICA should be performed at a group-level or
specific single-subject components preselected for group infer-
ences (Damoiseaux et al., 2006; DeLuca et al., 2006; Calhoun et al.,
2008; Li et al., 2007; Schöpf et al., 2010). Group ICA approaches
in which single-subject data is concatenated in time have been
introduced by Jafri et al. (2008) and Damoiseaux et al. (2006).
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Additionally, Damoiseaux et al. (2006) used a three-dimensional
tensor representing spatial, temporal and subject-specific loadings
for each group component. Sorg et al. (2007) and Harrison et al.
(2008) evaluated components on the single-subject level by select-
ing components for further group analysis via visual inspection.
Greicius et al. (2003), van de Ven et al. (2004), and Calhoun et al.
(2008) all based their selection of single-subject RSN components
on predefined spatial templates following published RSNs. This
template selection technique was also used by Garrity et al. (2007)
and Greicius et al. (2007) who based their template definition on
the results of previously conducted fMRI experiments.

Another evaluation approach assessing spatial consistency
between component maps was recently introduced by DeLuca et
al. (2006) where the spatial correlation coefficient of all compo-
nents from one subject with every other subject’s components
is computed. In their implementation, components with correla-
tion coefficients below 0.15 were disregarded. All component maps
which survived this predefined threshold level were evaluated by
visual inspection for consistent pair-wise correlations between all
components of all subjects. In a second step, all resulting group
maps were visually inspected for representing RSN patterns. In this
group approach resulting RSNs are biased by the visual criterion
used for pair-wise correlations and pattern selection.

A promising clustering-approach, not in the context of resting-
state paradigms, also based on single-subject ICA has recently been
introduced by Esposito et al. (2005). The algorithm introduces a
complex similarity measure by taking into account spatial and tem-
poral characteristics for clustering. As temporal RSN patterns do not
imply very diverse temporal characteristics this leads to unpre-
dictable outcomes. Furthermore, rank ordering of the extracted
components is biased by visual selection of component maps.

All above selection approaches are strongly dependent on the
component selection level, and true RSNs might be disregarded due
to the predefined threshold level, template definition, or visual cri-
terion. In order to overcome these limitations, we decided to use
FENICA, introduced in the context of group ICA approaches (Schöpf
et al., 2009), yielding activation maps without requirements for
visual inspection in a statistical framework similar to that of con-
ventional general linear model approaches. As this method allows
for unbiased calculation of networks at a group-level without any
requirements for visual inspection of single-subjects’ components
or a priori template definition, it provides a crucial approach of
assessing RSNs.

2. Materials and methods

2.1. Subjects

Twenty-eight healthy subjects (16 females, mean age 27.3 years,
SD 7.1 years) were included in the study. All subjects were informed
about the aim of the study and gave their written informed consent
prior to inclusion. The study was approved by the Ethics Committee
of the Medical University of Vienna.

2.2. Imaging methods

Measurements were performed on a 3 Tesla Medspec S300
system (Bruker Biospin, Ettlingen, Germany) using single-shot
gradient-recalled echo-planar imaging (EPI). Fourteen axial slices
(6 mm thickness, 1 mm gap) with a matrix size of 64 × 96, FOV of
230 mm × 190 mm and TE/TR of 40/1000 ms were acquired. Slices
were aligned to the connection line between anterior and posterior
commissure. Subjects were instructed to relax, stay awake, and lie
still, while keeping their eyes closed at all times during the 360-s
resting-state scan.

2.3. Data analysis

All computations were performed on a CALLEO 321 Server
equipped with two Quad-Core Intel Xeon E5450 3.0 GHz processors
and 16 GB RAM (transtec GmbH, Vienna, Austria).

2.3.1. Preprocessing
Image preprocessing was performed in SPM5 (http://www.

fil.ion.ucl.ac.uk/spm/) including slice-timing and motion cor-
rection, spatial normalization and spatial smoothing using a
Gaussian kernel (FWHM = 9 mm). Following the recommenda-
tion of a recent study (Weissenbacher et al., 2009), we used
multiple linear regression to correct data sets for residual
motion and global signal changes, before applying bandpass-
filtering (12-term FIR filter (0.009 < f < 0.08 Hz)) using IDL (RSI,
USA). To correct for artifacts related to breathing, motion and
heart-beat, two regions of interests (i.e., white matter and ven-
tricles (cornu occipitale)) were defined and time courses were
extracted for each subject. Time courses of both ROIs were
added to a design matrix as nuisance regressors which was
then used to remove corresponding physiological artifacts from
the individual data sets (for further details see Weissenbacher
et al., 2009). Single-subject ICA was performed using proba-
bilistic ICA (Beckmann and Smith, 2004) as implemented in
MELODIC (Multivariate Exploratory Linear Decomposition into
Independent Components) version 3.05, as implemented in FSL
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl). The opti-
mum number of components to be estimated for each subject
was determined by using Minimum Description Length (MDL)
(Rissanen, 1978).

2.3.2. Component selection
For all N subjects ICA returns NTOTAL components, whereby ck,m

is denoted as the spatial map of component number m of subject
k. The number of components of a subject k is referred to as Nk.
The absolute value of the correlation coefficient of component m1
of subject k1 and component m2 of subject k2 is given by

corrcoef(ck1,m1
, ck2,m2

) =
∣∣∣∣∣

cov(ck1,m1
, ck2,m2

)√
cov(ck1,m1

)cov(ck2,m2
)

∣∣∣∣∣ (1)

for all k1, k2 ∈{1, . . ., N}, m1 ∈ {1, . . . , Nk1
}, and m2 ∈ {1, . . . , Nk2

}.
A correlation matrix CC of size NTOTAL × NTOTAL was calculated by
spatially correlating all component maps of all N subjects.

Average maps S� are formed as the mean of ck1,m1
and ck2,m2

S� = ck1,m1
+ ck2,m2

2
, (2)

for all k1 ∈{1, . . ., N}, k2 ∈{1, . . ., N}/{k1}, m1 ∈ {1, . . . , Nk1
}, and

m2 ∈ {1, . . . , Nk2
} resulting in NAVG components, with

NAVG = ((NTOTAL)2 −
N∑

k=1

(Nk)2) · 1
2

.

Each average map S� for �= 1, . . ., NAVG is spatially correlated
with all NTOTAL component maps, and the map with the highest cor-
relation within every subject was determined. Thereby we obtain
one component per subject forming NAVG networks, defining a net-
work matrix N of size N × NAVG,

∀j ∃1 N(j, �) : max
m=1,...,Nj

[corrcoef(cj,m, S�)], (3)

for every j ∈{1, . . ., N} and �∈{1, . . ., NAVG}.
The network matrix N includes NAVG networks that are spatially

consistent across the group. A spatial equivalence level was intro-
duced as a measure to merge spatially matching networks in order
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