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a b s t r a c t

Tremor is one of the most disabling symptoms in patients with movement disorders such as Parkinson’s
disease (PD) and essential tremor (ET). Spike trains extracted from microelectrode recordings are used
to study the relationship of tremor exhibited by neuronal signals to physical tremor as measured with
electromyograms (EMG), gyroscopes, or accelerometers. We describe a new method for continuously
tracking the instantaneous tremor frequency and amplitude in spike trains based on a new state-space
model and the extended Kalman smoother. This method can be used to detect periods of statistically
significant tremor in recordings with intermittent tremor.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Tremor activity can be measured with many types of
instrumentation and sensors including electroencephalograms
(EEG), magnetoencephalograms (MEG), electromyograms (EMG),
accelerometers, gyroscopes, and microelectrode recordings (MER).
Most tremor signals are quasi-periodic and nearly sinusoidal.

A number of recent studies have focused on characterizing the
relationship of two or more tremor signals. In many cases these
signals are obtained from different types of instrumentation (e.g.,
MER and EMG). One of the surprising findings of these studies is
that even when two signals contain significant tremor at the same
frequency, these signals are not always coherent or phase coupled
(Hurtado et al., 2005, 2000). This suggests that tremor either orig-
inates from multiple sources or that the tremor is modulated by
uncoupled sources of unknown origin. A few studies have also
found that the phase coupling between pairs of tremor signals
varies over time (Hurtado et al., 2005, 2004, 1999; Hellwig et al.,
2003).

One of the difficulties with studying phase coupling is that this
signal behavior cannot be characterized with traditional signal pro-
cessing and time series analysis techniques that assume that the
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signals are generated by a linear stochastic process. These methods
are essentially blind to subtle nonlinear effects, such as intermit-
tent phase coupling. This presents an opportunity for new signal
processing methods that can estimate how the degree of phase
coupling between pairs of tremor signals varies over time.

The main goal of the phase coupling study is to measure the
degree of synchronization between tremorous activities in two
signals. In the phase coupling study, measuring the strength of
tremorous activities in each signal is the first task to perform since
the phase coupling is meaningful only when tremor is present
in both signals. Based on the tremor strength measurement, the
signals are segmented into tremor-on and tremor-off periods. This
step is called tremor detection. The following step is to track the
instantaneous tremor frequency (ITF) of the tremor-on periods. It
is common to perform the detection and tracking steps separately.

Hurtado et al. conducted the most thorough study of intermit-
tent coupling of tremor signals to date (Hurtado et al., 2005, 2004).
They studied the synchronization between tremor-related activi-
ties in single unit spike trains and EMG, where spike trains were
recorded from globus pallidus internus (GPi) and EMG from the
abductor pollicis (APB) in Parkinsonian subjects. Prior to the syn-
chronization study, they first detected tremor-on periods of the
signals relying on the traditional time–frequency analysis. Their
tremor detection algorithm involves setting a threshold for tremor
amplitude. They selected a threshold value based on visual inspec-
tion of the signal’s spectral components. Then, they applied a ITF
tracking method based on the Hilbert transform to tremor-on peri-
ods of the signals. The Hilbert transform produces an estimate of
Gabor’s analytic signal. However, spike trains rarely meet the con-
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ditions necessary for this estimate to be accurate (Boashash, 1992).
In particular, the representation of spikes as impulses results in a
broad signal bandwidth that makes it difficult to track a single fre-
quency. In Kim and McNames (2006) we demonstrated that the
Hilbert transform based ITF tracker does not produce an accurate
estimate of ITF.

We propose a method based on the Kalman filter to track the
instantaneous tremor frequency (ITF) and amplitude (ITA) simulta-
neously. Although the Kalman filter is not widely used for frequency
tracking, it is a suitable approach for this problem because it is
based on an explicit statistical model of the signal that permits
the user to incorporate domain knowledge elegantly into the esti-
mator. For example, in this application the observation noise in
the spike trains, the amplitude and rate at which the tremor fre-
quency fluctuates, and the typical range of tremor frequencies is
either known or can be estimated (Deuschl and Elble, 2000). Since
the ITF has a nonlinear relationship with the signal, we applied the
extended Kalman smoother (EKS), which uses a first-order Taylor
series approximation around estimates of the current state.

Our previous work has demonstrated that the EKF and EKS
are suitable methods to track the ITF in spike trains (Kim and
McNames, 2006). In this paper we describe an improved state-
space model that can track the ITA as well as the ITF. This is a
significant improvement over our prior work which assumed a con-
stant tremor amplitude. The state-space model and estimator that
we use are similar to those used in Parker and Anderson (1990), but
the application is different and we incorporate additional domain
knowledge about the process in our model to improve robustness
and reduce sensitivity to user-specified parameters.

Rivlin-Etzion et al. (2006) proposed a local shuffling method
to overcome the low frequency range spectral distortion of spike
trains due to a refractory time. However, in our applications, the
spectral distortion was not noticeable since the refractory time was
small in comparison to the mean firing rate.

The objectives of this work were to design a tremor tracker that
estimates the ITF and ITA of tremorous activities in neuronal record-
ings continuously and to study the performance of the tracker based
on synthetic and real neuronal recordings. The neuronal record-
ings are widely modeled as point processes consisting of a series of
action potentials, or spikes, that are treated as all-or-none events.
Most researchers assume that all of the useful information is con-
veyed in the timing of these events. It is common practice to detect
spikes during the early stages of analysis and focus all subsequent
analysis on spike trains that consist of a 1 at the time of each
spike occurrence and 0 elsewhere. Tremor is exhibited in this sig-
nal through pulse frequency modulation that causes fluctuations in
the mean firing rate (McNames, 2005). All spike trains in this study
are single unit spike trains.

2. Methodology

2.1. Introduction and notation

The Kalman filter recursively estimates the state of a linear
stochastic process such that the mean squared error is minimized
(Kalman, 1960). Each estimate of the current state is computed
based on the previous state and the current observation. The
Kalman smoother is a non-causal estimator that uses the entire
record to estimate the state of a linear stochastic process.

Our statistical model is nonlinear because the ITF is related to the
spike train via sinusoids. Therefore, the Kalman filter and smoother
cannot be applied directly to it. One way to handle the nonlinearity
of the model is to approximate a nonlinear state-space model by
a local linear approximation of the model. The extended versions
of the Kalman filter (EKF) and smoother (EKS) recursively estimate

the state of a nonlinear stochastic process relying on the local linear
approximation of the nonlinear state-space model. Since the state
estimates are calculated recursively, the computational require-
ments are quite manageable for most applications.

We used boldface notation to denote random processes, normal
face for deterministic parameters, upper case letters for matri-
ces, lower case letters for vectors and scalars, and subscripts for
time indices. The spike train or simply spike train is denoted as
yn where n = 0, . . . , N is the independent variable representing
discrete time.

2.2. Rectangular observation model

We use the following observation model

yn = an cos
(
�n

)
+ bn sin

(
�n

)
+ ȳn + vn (1)

where an and bn are the amplitudes of two sinusoidal components,
ȳn is the trend, and vn is a white noise process with zero-mean and
variance r. We define the instantaneous tremor amplitude (ITA) as

cn �
√
a2

n + b2
n (2)

In the terminology of Parker and Anderson (1990), this is called a
rectangular model. Other mathematically equivalent models have
been used for frequency tracking with the extended Kalman filter
(Parker and Anderson, 1990; La Scala et al., 1995, 1996; Bittanti and
Savaresi, 2000; Kim and McNames, 2006), but the performance of
these trackers varies due to differences in the linearization errors.
We have chosen the rectangular model because it is linear in the
state variables an, bn, and ȳn and should therefore introduce less
error in the linear approximations that the EKF relies on.

In most Kalman filter applications the measurement noise vn

is assumed to be white and Gaussian. However, the Kalman filter
recursions are still optimal in that they minimize the mean square
error (MSE) even if the noise does not have a Gaussian distribution,
so long as it is white. A Poisson point process is another example
of a random process that is white, even though the distribution of
the point process is binary-valued and non-Gaussian. A spike train
with tremor contains a systematic fluctuation in the firing rate and
is not a white noise process, but the systematic fluctuation can be
modeled as a slowly varying trend and a sinusoidal component. The
remaining fluctuations in the spike train are reasonably modeled
as a white noise process, which permits us to use the observation
model in (1).

2.3. Process model

The state of this process consists of the instantaneous phase �n,
instantaneous frequency f n, trendyn, and the coefficientsan andbn.
We model fluctuations in the instantaneous phase as a first-order
approximation of an integral of the instantaneous frequency,

�n+1 = mod2�{�n + 2�Tss [f n]}, (3)

where Ts = 1/fs is the sampling interval. The modulus operator,
mod2� , has no effect on the model mathematically, but keeps �n+1
bounded to 0 ≤ �n ≤ 2� and reduces roundoff error.

The instantaneous tremor frequency (ITF) of the process is
defined as

f i,n = s [f n] , (4)

where s[·] is a squashing function or limiter that prevents the ITF
from exceeding user-specified limits, fmin ≤ f i,n ≤ fmax. Throughout
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