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Diffusion tensor imaging (DTI) tractography is a novel technique that can delineate the trajectories
between cortical region of the human brain non-invasively. In this paper, a novel DTI based white mat-
ter fiber tractography using genetic algorithm is presented. Adapting the concepts from evolutionary
biology which include selection, recombination and mutation, globally optimized fiber pathways are
generated iteratively. Global optimality of the fiber tracts is evaluated using Bayes decision rule, which
simultaneously considers both the fiber geometric smoothness and consistency with the tensor field.
This global optimality assigns the tracking fibers great immunity to random image noise and other local
image artifacts, thus avoiding the detrimental effects of cumulative noise on fiber tracking. Experiments
with synthetic and in vivo human DTI data have demonstrated the feasibility and robustness of this new
fiber tracking technique, and an improved performance over commonly used probabilistic fiber tracking.
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1. Introduction

Diffusion tensor imaging (DTI) has become a primary tool for
non-invasive exploration of the structure of living tissue in vivo
(Basser et al., 1994). Since its first introduction a decade ago, this
new imaging modality has been widely used to reconstruct neu-
ronal fiber pathways in the human brain (Mori and van Zijl, 2002).
To date a variety of tracking algorithms have been proposed to infer
fiber connections in the human brain (Lu et al., 2006; Friman et al.,
2006; Zhang et al., 2009), the basic principle of which is sequentially
integrating local fiber directions from pre-defined seed point(s)
to generate fiber connection pathways. Typically, these tracking
algorithms “grow” fiber pathways by piecing a line segment to
the end of the preceding segment. These methods can be broadly
divided into two categories: deterministic fiber tractography (Lu et
al., 2006) and probabilistic fiber tractography (Friman et al., 2006).

A common drawback of the above streamline-like tracking
methods, either deterministic or probabilistic, is cumulative errors
arising from random image noise and/or partial volume averaging
(PVA) along the tracking path (Alexander et al., 2001; Anderson,
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2001), even with certain regularizations on the basis of geometric
or other constraints. Furthermore, as the direction information that
stream-like tracking methods rely on is only derived locally, the
tracking results from these methods are not a globally optimized
solution.

In this work, a novel fiber tracking technique based on well
established genetic algorithms was proposed. The proposed tech-
nique allows globally optimized solutions to the fiber pathways
to be obtained, and hence possesses superb immunity to local
imaging artifacts. Additionally, the proposed technique provides
optimal solutions for fiber connection pathways between two des-
ignated ROIs; this offers a great potential of applying it to studies
of structure-function relations in the human brain, in which the
structural connectivity between two functionally related regions is
often sought.

2. Method

A common practice of fiber tracking is to track fiber pathways
that connect to certain ROIs, among which a most useful application
is to find connecting pathways between an ROI pair. Fiber tracking
between a pair of ROIs can be cast as a path finding problem to
which an optimal solution is found by genetic algorithm (GA). In
this context, the goal is to evolve from initial solutions to produce a
set of fibers with best fitness to the given data, which is presumably
an optimal solution to the fiber path. Details of the implementation
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procedure for one iteration of the genetic tracking algorithm, called
GeneTrack henceforth, are given below.

2.1. Initialization

In a typical GA, solutions are encoded as strings of binary bits,
which are analogous to chromosomes in biology. Binary strings
can be extended to continuous strings, which are chosen as initial
solutions in our design. More specifically, we represent an arbi-
trary fiber pathway between a pair of ROIs with a space curve (f),
and express the curve f as Fourier series (of continuous values) in
Cartesian system, i.e.

N

fie) =

n=1

[afl cos(nt) + b sin(nt)] , (1)

where superscript d denotes the x, y, or z direction in the Cartesian
system, n is the order of Fourier series, t is the number of points in
curve f, the a, and by, are coefficients of the cosine and sine compo-
nents respectively, and N is the maximum order of Fourier series
for approximation with reasonable accuracy (t=50 and N=10 in
this work). According to the equation above, every fiber curve can
be represented by 2N Fourier coefficients in each direction, which
consists of N coefficients for both a, and b,,. The 6N coefficients in
all three directions, which correspond to the genes of the chromo-
somes, encode the solutions for the fiber pathways between an ROI
pair and will be used for recombination and mutation to produce
offspring in later steps.

2.2. Selection

In designing objective functions for selecting best fit solutions
among the candidates, two primary considerations are taken into
account. First, the solutions should possess best geometric smooth-
ness along the entire fiber path. Second, the solutions should be
those best fit the diffusion tensor field among all candidates. Simul-
taneously considerations of these (with certain trade-off) may yield
solutions that are globally optimal in the sense that the curves are
both smooth and reasonably fit the data.

Globally optimal solutions may be obtained by using the clas-
sical Bayesian theory (Duda and Hart, 1973). Let T denote the
diffusion tensor field and C denote spatial curves that cover all pos-
sible fiber pathways connecting the designated ROI pair. According
to the Bayes decision rule, the optimal solution Cop is the one with
maximum a posteriori (MAP) probability p(C|T):

p(C)p(TIC)
p(CIT) = FORE (2)

Since p(T) is independent of C, maximizing p(C|T) reduces to
maximizing the product of p(C) and p(T|C). The term p(C) is a prior
probability of curve C, which is the probability of the existence of
curve C without any measurement data; the term p(T|C) is a condi-
tional probability, which defines the probability of the existence of
tensor field T given curve C.

To find the MAP solution, p(C) and p(T|C) need to be modeled. In
our design, these probabilities are modeled so that constraints on
curve smoothness and consistency with tensor field are imposed.
First, let us assume the tensor field to be a Markovian random field
(MRF), and v¢ be a unit vector representing the local tangential
direction at the tth point of the curve. According to the MRF theory,
vy is a random realization of the vector field in the neighborhood of
t, which observes a Gibbs distribution (Geman and Geman, 1984):

1 1
— -p(ve) — - p(ve)
PO =7]]e _Ziez (3)

t

where Z; is a normalization constant. When only the preceding
point along the curve is considered, a simple definition of P(v;) is

p(vy) = arccos(ve - V¢_1) (4)

This definition of the prior probability gives preference to the
curves with low curvature, thus imposing a smoothness constraint
to the fiber.

Second, assuming that the tensor measurement in voxel t
depends only on the local fascicle direction v, the conditional prob-
ability p(T|C) can be rewritten as a second Gibbs distribution below:

1 1
— =p(Ttlve) — - p(Telve)
pmo =7 e Z¢ 2 (5)

t

where Z; is a normalizing constant.

In order for the probability p(T:|v;) to decrease with the discrep-
ancy between the local fiber direction v and the major eigenvector
of the local diffusion tensor e, we propose the following conditional
probability model:

p(T¢|ve) = arccos(vt - er) (6)

Combining all the previous models (Egs. (3) and (5)) leads to an
expression for p(C|T) which turns out to be a new Gibbs distribu-
tion:

p(CIT) = Zl—Be—ZP(wHav(Ttm) -
t

where Z3 =Z; x Z,.
With this new Gibbs distribution, an optimal solution can be
reached by minimizing the following cost function:

feost = _plw)+ay p(Telve). (8)
t t

The first term in the above cost function imposes a smoothness
constraint on the fiber pathway, and the second term encourages a
consistency between the fiber and tensor dominant directions. The
relative weights of these two terms are determined by the parame-
ter o, which regulates the trade-off between the smoothness of the
fiber and consistency with the data. In this work, the range of « is
chosen to be between 0 and 10.

2.3. Recombination

The subset of optimal fibers selected above is recombined to
form a new set of fibers. This is implemented by randomly select-
ing a value for each of the 6N coefficients in Eq. (1) from the parent
fibers, so that the coefficients for each new fiber come from differ-
ent parents. This new set of fibers, along with a small number of
best fit parents, constitute the offspring for the next generation.

2.4. Mutation

The mutation process perturbs the coefficients of the above
fibers so that each solution contains a new set of values for the
coefficients. To maintain the stability of this algorithm, the amount
of perturbation for each coefficient is at the order of one standard
deviation of the coefficients in the existing fibers. This provides sta-
bility to the solution, and in the meantime offers an opportunity to
generate new solutions that better fit the cost function.

3. Tracking experiments and results

To evaluate comprehensively the performance of the GeneTrack
algorithm proposed, we have carried out a series of fiber tracking
experiments on synthetic and in vivo human DTI datasets. Fiber
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