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Abstract

Spectral analysis methods are now routinely used in electrophysiological studies of human and animal cognition. Although a wide variety
of spectral methods has been used, the ways in which these methods differ are not generally understood. Here we use simulation methods to
characterize the similarities and differences between three spectral analysis methods: wavelets, multitapers and Pepisode. Pepisode is a novel method
that quantifies the fraction of time that oscillations exceed amplitude and duration thresholds. We show that wavelets and Pepisode used side-by-side
helps to disentangle length and amplitude of a signal. Pepisode is especially sensitive to fluctuations around its thresholds, puts frequencies on a
more equal footing, and is sensitive to long but low-amplitude signals. In contrast, multitaper methods are less sensitive to weak signals, but are
very frequency-specific. If frequency specificity is not essential, then wavelets and Pepisode are recommended.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Oscillations; EEG; Wavelets; Multitapers; Pepisode

1. Introduction

Oscillations arise from an interaction between the intrinsic
properties of neurons (excitability) and their interconnectiv-
ity, giving rise to synchronous activity (Buzsáki and Draguhn,
2004). Oscillations at various frequencies may be readily seen
in electroencephalographic (EEG) recordings across species and
are known to correlate with an animal’s behavior and with the
stimulating conditions present in the environment. Although
early studies relied on visual inspection of the EEG signal to
identify epochs of oscillatory activity and their behavioral cor-
relates (Berger, 1929), the advent of modern computers now
enables researchers to quantify the presence of oscillatory com-
ponents in the EEG using spectral analysis methods. Spectral
methods are widely used throughout the neurosciences and have
yielded many new findings concerning the electrophysiology of
both animal and human cognition (e.g., Klimesch et al., 1994;
Kahana et al., 2001; Bastiaansen and Hagoort, 2003; Buzsáki
and Draguhn, 2004; Kahana, 2006).
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A myriad of spectral methods exist, which differ in the as-
pects of the data they highlight. However, exactly what aspects
are highlighted by each method is often unclear. Our goal in
this paper is to compare three methods used in the analysis of
EEG oscillations. All three methods involve Fourier analysis.
That is, they all seek to decompose the time series of EEG ac-
tivity into sinusoidal functions whose amplitude and phase vary
across frequency, but the shape of these functions differ for each
method. In a traditional Fourier analysis, the function with which
the signal is convolved1 is a sinusoid of fixed length, and in or-
der to improve temporal specificity, the analysis is performed
on short windows (“windowing”). However, traditional Fourier
analysis has a number of shortcomings: it has relatively poor
time–frequency resolution (Bruns, 2004), the length of the win-
dow fixes the scale of the to-be-detected signal, and it is mainly
designed for stationary2 and regular signals (Mallat, 1998; Zhan
et al., 2006). Because of the fixed window length, Fourier anal-
ysis is only useful in a limited frequency range that is optimized

1 A convolution measures the overlap between two functions by shifting them
over one another and integrating over all shifts.

2 ‘Stationary’ means that the signal has no significant change in its mean over
time.
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for your time window (Perrier et al., 1995). Moreover, none of
the conventional oscillatory analysis methods differentiate oscil-
lations from artifacts and evoked potentials, which can manifest
as short events in Fourier space. Therefore, several alternatives
have been proposed for analyzing brain oscillations, some of
which will be discussed here.

We will examine three methods, namely wavelets (introduced
for neural data in Kemerait and Childers (1972) and Schiff et al.
(1994)), multitapers (introduced for the analysis of neural data
in Mitra and Pesaran (1999)) and Pepisode (introduced in Caplan
et al. (2001)). Wavelets are functions that can come in many
shapes, and the analyzed signal is decomposed into scaled and
shifted versions of the oscillating waveform you are using. Be-
cause the wavelet functions are shifted and scaled versions of one
another, the proportion between temporal width and frequency
bandwidth remains the same for all frequencies. Therefore, a
crucial difference from windowed Fourier analysis is that the
size of the window depends on the frequency, which gives rise to
more temporal precision for higher frequencies. Wavelets have
a very good time–frequency resolution trade-off (Sinkkonen et
al., 1995), making them quite useful for the analysis of non-
stationary signals.

Multitapers are sets of functions that were designed to re-
duce bleeding between frequencies, rendering them well-suited
for non-stationary processes with high dynamic ranges and/or
rapid variations (Walden et al., 1998). An important distinction
from wavelets is that the width of the function stays the same in
absolute time across frequencies (similar to a Fourier transform).
Finally, because multitapers imply that the signal is convolved
with multiple orthogonal tapers,3 which are then averaged, the
variance of this oscillation detection method across repeated
measurements is reduced. In other words, the amplitude mea-
surements taken with multitapers will have smaller error bars
than, for example, wavelets.

Both wavelets and multitapers do not discriminate between
short, high-amplitude power fluctuations and longer oscilla-
tions. The Pepisode method addresses this issue because it was
designed to detect “oscillatory episodes” and ignore transient
voltage fluctuations (Caplan et al., 2001). This method charac-
terizes whether oscillations at a given frequency are present or
absent at a given time point in an ongoing EEG signal. It uses
wavelets to determine the amplitude of oscillatory activity at a
given frequency and time, and then applies an amplitude and
duration threshold to characterize whether the signal is in an
oscillatory state. Instead of measuring mean oscillatory power,
Caplan et al.’s method measures the fraction of a time inter-
val during which the signal exceeds the amplitude and duration
threshold at a given frequency. This fraction is then termed the
probability of being in an oscillatory episode at frequency f,
or Pepisode(f ). It is likely that the number of oscillatory cycles
is more relevant than absolute length for information process-
ing and computation (for an example see Jensen, 2006; Ward,
2003). Therefore, we will perform most analyses in this paper

3 Tapers are functions that smooth the data by having a value of one in the
middle and then slowly tapering off to zero at the edges.

in units of oscillatory cycles at a given frequency as opposed
to time in seconds, an alternative way of quantifying oscillatory
power.

We will compare these methods by first analyzing simulated
EEG data where the signal to be recovered is known. We then
apply the three methods to empirical data. Comparing the results
from simulations to effects in real data will allow us to highlight
the differences between the three methods. We end the paper by
offering recommendations to scientists interested in measuring
oscillatory effects in EEG data.

2. Methods

2.1. Specifications of analysis methods

The first method we consider is wavelet analysis (Fig. 1a and
d). Wavelets come in many shapes, each designed to capture dif-
ferent aspects of a time series. The Morlet wavelet is commonly
used for the analysis of human EEG (Schiff et al., 1994) because
its sinusoidal shape, which tapers at the ends, matches the signal
we expect to extract from the EEG. This is crucial, because the
success of wavelet analysis depends upon the suitability of the
wavelet for detecting the desired signal (Özdemir et al., 2005).
A small disadvantage of the wavelet is that it is non-orthogonal,
hence computationally inefficient.4 The Morlet wavelet is de-
fined as follows (illustrated in Fig. 1g):

SW = s(t) ∗ 1

(σt

√
π)1/2 e−(t2/2σ2

t ) e2iπ ft (1)

In this equation, SW denotes the wavelet-transformed signal,
s(t) is the original signal, t and f represent time and frequency,
respectively, and ∗ means convolution. The square root term
causes the wavelet to be normalized to have an energy (squared
integral) of 1. After the convolution, the absolute magnitude of
the square of Eq. (1) will be taken. Wavelets have a length that
scales inversely with frequency, such that the time–frequency
product, or alternatively the number of cycles of oscillations
within a wavelet, remains constant (the actual number of oscil-
lations is set by the wavenumber k in σt = k/πf ). It also means,
however, that for higher frequencies the frequency resolution
decreases and the temporal resolution increases (i.e., tempo-
ral and frequency resolution trade-off). In this paper, we use a
wavenumber of 6, which is often used in human EEG analy-
sis to strike a balance between temporal and frequency speci-
ficity (e.g., Sederberg et al., 2003, in press). In addition, the
decomposition we use is a continuous wavelet transform, which
has the advantage that we can investigate signals at arbitrary
scales (as opposed to a decomposition at a fixed set of orthog-
onal frequencies–the discrete wavelet transform). However, it
has the disadvantage that the wavelets used are not necessarily
orthogonal (as is the case when the frequencies used are not loga-
rithmically spaced) and, hence, the obtained power estimates are

4 Non-orthogonal refers to overlap or correlation between the different
wavelets, which essentially means that the overlapping part is convolved with
your data twice. This is what is meant by ‘computationally inefficient’.
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