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Abstract—Experiments on the adult visual cortex of cats,

ferrets and monkeys have revealed organized spatial rela-

tionships between multiple feature maps which can also

be reproduced by the Kohonen and elastic net self-

organization models. However, attempts to apply these

models to simulate the temporal kinetics of monocular

deprivation (MD) during the critical period, and their effects

on the spatial arrangement of feature maps, have led to con-

flicting results. In this study, we performed MD and chronic

imaging in the ferret visual cortex during the critical period

of ocular dominance (OD) plasticity. We also used the Koho-

nen model to simulate the effects of MD on OD and orienta-

tion map development. Both the experiments and

simulations demonstrated two general parameter-

insensitive findings. Specifically, our first finding demon-

strated that the OD index shift resulting from MD, and its

subsequent recovery during binocular vision (BV), were

both nonlinear, with a significantly stronger shift occurring

during the initial period. Meanwhile, spatial reorganization

of feature maps led to globally unchanged but locally shifted

map patterns. In detail, we found that the periodicity of OD

and orientation maps remained unchanged during, and

after, deprivation. Relationships between OD and orienta-

tion maps remained similar but were significantly weakened

due to OD border shifts. These results indicate that orthog-

onal gradient relationships between maps may be preset

and are only mildly modifiable during the critical period.

The Kohonen model was able to reproduce these experi-

mental results, hence its role is further extended to the

description of cortical feature map dynamics during devel-

opment. � 2016 IBRO. Published by Elsevier Ltd. All rights

reserved.
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INTRODUCTION

Computational models can play an invaluable role in

quantitatively exploring brain function, which depends

upon the complex, rapidly changing interactions that

occur between billions of neurons. In past years, the

use of computational models has considerably

deepened our understanding on cortical map formation

and organization in the primary visual cortex (Kohonen,

1982; Durbin and Mitchison, 1990; Goodhill and

Willshaw, 1990; Obermayer et al., 1990; Miller and

MacKay, 1994; Miller, 1996; reviewed in Swindale,

1996; Chklovskii and Koulakov, 2004; Carreira-Perpiñán

et al., 2005; Goodhill, 2007). Recently, the self-

organization model based on the Kohonen algorithm not

only simulated the precise spatial organization pattern

between multiple feature maps, but also generated a ser-

ies of quantitative predictions that were later successfully

confirmed in adult animals (Yu et al., 2005; Farley et al.,

2007; reviewed in Goodhill, 2007). While this model reli-

ably predicts feature map patterns in mature, relatively

static visual cortex, whether the same model can be used

to accurately predict the temporal and spatial dynamics

during rapid functional re-organization of a highly plastic

developing nervous system, remains unknown.

Ocular dominance (OD) plasticity presents a well-

suited paradigm for exploring this question. In the critical

period, altered visual input, such as monocular

deprivation (MD), can shift the response of neurons in

the primary visual cortex to become more attuned to

input from the non-deprived eye. As a result, the

deprived eye-associated cortical regions shrink rapidly

(Wiesel and Hubel, 1963; Hubel and Wiesel, 1970). How-

ever, the exact temporal kinetic and spatial dynamics

which occur during MD remain unclear and controversial.

Temporally, several studies have indicated that a few

hours of binocular vision (BV) can restore the loss of func-

tion elicited by long-term MD, suggesting recovery may

have different kinetics compared to MD (Krahe et al.,

2005; Schwarzkopf et al., 2007; Mitchell and Sengpiel,

2009). However, other studies, which were based on firing

rate, intrinsic signal and dendritic spine turnover, have

demonstrated that the MD effect can also be rapid within

a few hours (Mioche and Singer, 1989; Trachtenberg

et al., 2000; Yu et al., 2011). Spatially, orientation selec-

tivity is believed to form independent of the OD index,

as MD does not influence the spatial layout of orientation

maps in the reverse suture (RS) experiments (Kim and
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Bonhoeffer, 1994; Gödecke et al., 1997). However,

monocular enucleation of ferrets at birth suggests that

removal of the OD map affects the layout of other feature

maps, including the orientation map (Farley et al., 2007);

simulations based on dimension reduction models have

led to similar conclusions (Swindale, 2004; Carreira-Perpi

ñán et al., 2005).

Another fundamental question is whether the layout of

feature maps is inherited or established after birth. The

OD map does re-organize dramatically after MD during

the critical period, suggesting the key role of visual

experience. However, the OD map pattern seems to be

already formed before the critical period (Horton and

Hocking, 1996; Crowley and Katz, 1999, 2000). Similarly,

without common binocular visual experience, the orienta-

tion map of the left eye develops to be identical to the one

of the right eye (Kim and Bonhoeffer, 1994; Gödecke

et al., 1997). Beyond the divergence on single feature

maps, how the interactions between different feature

maps change upon MD remains unknown. In normal adult

visual cortex, different feature maps have been

simulation-predicted and experiment-confirmed to be

inter-related (Blasdel and Salama, 1986; Bartfeld and

Grinvald, 1992; Hubener et al., 1997; Crair et al.,

1997a; Müller et al., 2000; Yu et al., 2005). This relation-

ship helps to achieve the optimal coverage and continuity

of various features in 2D cortical space (Swindale et al.,

2000). However, when MD significantly reshapes the lay-

out of the OD map, will the spatial principle between the

OD and other feature maps be preserved? How and when

are they established and modified?

We hypothesized that simulation-guided depictions of

OD plasticity would help to elucidate these issues. Then

we utilized in vivo animal experimental data to help test

the validity of the predictions generated by our self-

organization model. Specifically, in our experimental

setup, we performed repeated chronic in vivo imaging of

the OD and orientation maps of visual cortex in young

ferrets during the critical period. We examined how MD

and recovery by BV exposure affected the temporal and

spatial dynamics of multiple maps. The time-lapse

experimental data collected from the same piece of cortex

enabled detailed analysis and direct comparisons of

observed temporal and spatial modifications to our

simulations. Overall, we found that most of the

controversies described above were reconciled well in our

model. And importantly, these model-based predictions

were quantitatively confirmed by experimental results.

EXPERIMENTAL PROCEDURES

Computational model

We used a self-organization model based on the Kohonen

algorithm (Kohonen, 1982), as modified by Obermayer

et al. (1990, 1992) to simulate the mapping of response

features across the cortex. Each stimulus is represented

as a multicomponent vector, Vs = (xs, ys, qscos(2us),

qssin(2us), zs, fs), in a multi-dimensional feature space.

Here, x and y correspond to the azimuth and elevation

retinotopic position, respectively; q is orientation

selectivity; u is orientation preference; z is OD; and f is

spatial frequency preference. The feature x ranges from

(0, X), y from (0, Y), q from (0, Q), u from (0, p), z from

(�Z, Z), and f from (0, F). The stimuli are mapped onto

a cortical surface, which is represented as a two-

dimensional (2D) grid of N � N cortical points. Each corti-

cal point r= (i, j) has preferred features (i.e., a ‘‘receptive

field”) defined asWr = (xr, yr, qrcos(2ur), qrsin(2ur), zr, fr).

At the beginning of the simulation, the maps are initialized

as xr = i, yr = j, qr = Q/2, ur = rand � p, zr = 0, and

fr = F/2. The maps are formed through iterations (usually

around 1–2 � 106) of three steps. For each iteration, (1) a

stimulus Vs is chosen randomly from the complete feature

space, assuming a uniform distribution of each feature.

(2) The cortical point rc = (ic, jc), whose preferred features

are closest to those of the stimulus, is identified as the

‘‘winner”. The closeness of the feature is measured with

the Euclidian distance between the vectors |Vs �Wr|
2.

(3) The preferred features of the cortical points are

updated according to the equation DWr = ah(r)(Vs �Wr).

Here, a is the learning rate, r is the cortical distance

between a given cortical point (i, j) and the winner rc,
and h(r) = exp(�r2/r2) is the neighborhood function.

The neighborhood function restricts the changes in recep-

tive fields to those cortical points near the winner (in cor-

tical distance).

The following parameters were used for the

simulations: N= 513, r= 5, a= 0.02 (or arbitrary

functions to simulate the critical period, see later

description), X= qN, Y= N, Q= 40, Z= 30, and

F= 60 (elevation to azimuth magnification ratio of the

retinotopic map and was chosen as four in ferret, Yu

et al., 2005). The maps for further analyzing did not

include the boundary regions (50 pixels of each edge

were excluded). Rectangle regions (similar size to the

experimental data) of the model cortex were cropped for

display purpose. The feature maps could be formed and

the relationships between the maps persisted for a range

of simulation parameters (Q from 30 to 50, Z or F from 50

to 80, and r from 5.0 to 5.5), whereas the degree or

strength of these relationships systematically varied

within these ranges (see Fig. 7A–F).

To simulate the MD, we changed the OD range of the

stimulus space. The range of z was cut in half, (0, Z)

instead of (�Z, Z), to simulate the absence of input from

the deprived eye. The deprivation window was usually

set to 1 � 106 iterations (or 2 � 106 to achieve a

saturation effect, which is analogous to several days of

MD in experiments). For ordinary simulations, the

parameter changes usually started after 2 � 106

iterations, at which time the feature maps were fully

developed, since MD took place after OD map was well

formed in the cortex in the animal experiments (Crair

et al., 1997a). The start time could be changed according

to different purposes, and the effect was examined. After

MD, BV was achieved by setting the z range of the stim-

ulus space back to (�Z, Z), without any other modifica-

tions on specific parameters. For RS simulation, the

range of z was taken as (�Z, 0).
To simulate the critical period, the learning rate a was

set by the logistic function [ aðtÞ ¼ 0:02=ð1þ et�4:5�106Þ ],
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