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9 Abstract—The human brain is composed of complex net-

works of 100 billion neurons that underlie its higher func-

tions. The set of neural connections in the brain has

recently attracted growing interest from the scientific com-

munity. It is important to identify individual differences in

these neural connections to study the background of indi-

vidual differences in brain function and performance. In

the present study, we investigated whether the pattern of

brain diffusion, reflecting neural connections, is discernibly

different among individuals; i.e., whether brain diffusivity is

personally identifiable information. Using diffusion tensor

imaging data from 224 healthy subjects scanned twice at

an interval of about 1 year, we performed brain recognition

by spatial normalization of fractional anisotropy maps, fea-

ture extraction based on Principal Component Analysis,

and calculation of the Euclidean distances between image

pairs projected into the subspace. Even with only 16 dimen-

sions used for projection, the rank-one identification rate

was 99.1%. The rank-one identification rate was 100% with

P32 dimensions used for projection. The genuine accept

rates were 95.1% and 100% at a false accept rate of

0.001%, with 16 and P32 dimensions used for projection,

respectively. There were no large differences in the

Euclidean distance among different combinations of scan-

ners used or between image pairs with and without scanner

upgrade. The results indicate that brain diffusivity can iden-

tify a specific individual; i.e., the pattern of brain diffusion is

personally identifiable information. Individual differences in

brain diffusivity will form the basis of individual differences

in personality and brain function. � 2015 Published by

Elsevier Ltd. on behalf of IBRO.
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11INTRODUCTION

12The human brain is composed of networks of 100 billion

13neurons, each of which has thousands of synaptic

14connections to other neurons. This complex network

15underlies the higher functions of the human brain.

16Mapping and characterizing brain structural connectivity

17is important to improve our understanding of the

18complex functions of the human brain. The set of neural

19connections in the brain, now termed the connectome

20(Sporns et al., 2005), has been the focus of neu-

21roanatomy and has recently attracted growing interest

22from the scientific community (Smith, 2013). The connec-

23tome is a complete map of neural connections in the

24brain; however, brain networks can be defined and exam-

25ined at different levels of scale that correspond to the level

26of spatial resolution. Although all scales of resolution are

27closely related, each provides a unique perspective on

28the connectome. Mapping brain networks at a macro-

29scopic scale provides the systems-level understanding

30of neural processing (Behrens and Sporns, 2012).

31Recent advances in MRI have enabled the structural con-

32nectome to be explored in vivo at the level of macroscopic

33connectivity through diffusion-weighed MRI and tractogra-

34phy. At a macroscopic scale, diffusion-weighted MRI is

35the main imaging technique employed for mapping the

36structural connectivity of the human connectome.

37Diffusion-weighted imaging is sensitive to the random

38motions of water molecules (Basser et al., 1994; Basser

39and Pierpaoli, 1996). Diffusion tensor imaging (DTI), one

40of the most widely used forms of this technique, measures

41the direction and extent of microscopic water diffusion,

42which is affected by microstructure and is greatest in the

43direction of least restriction. Anisotropy in neural fibers

44is mainly due to the dense packing of axons and their

45intact cell membranes, and myelination modulates the

46degree of anisotropy (Beaulieu, 2002). Measuring aniso-

47tropy using DTI is a useful method for noninvasively

48detecting subtle white matter changes, even if the brain

49tissue appears normal on conventional MRI (Werring

50et al., 2000; Rovaris et al., 2002). DTI has been widely

51applied to study white matter tracts in normal brains

52(Rilling et al., 2008; Takao et al., 2011a, 2011g), in devel-

53oping and aging brains (Sullivan and Pfefferbaum, 2006;

54Inano et al., 2011; Lebel et al., 2012), and in a variety of

55neurological and neuropsychiatric disorders (Takao

56et al., 2010b; Thomason and Thompson, 2011; Gold

57et al., 2012). The changes in brain diffusivity that occur

58during brain development, maturation, and aging are

59related to changes in brain function and performance;

60and a variety of neurological and neuropsychiatric
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61 disorders cause and/or are related to changes in brain dif-

62 fusivity. In addition, there is a relation between brain diffu-

63 sivity and various types of specialized individual

64 performance, such as in musicians (Bengtsson et al.,

65 2005; Imfeld et al., 2009; Steele et al., 2013).

66 Longitudinal studies have shown that even learning and

67 training cause changes in brain diffusivity (Scholz et al.,

68 2009; Zatorre et al., 2012).

69 Large-scale brain imaging studies, such as the

70 Human Connectome Project (Van Essen et al., 2013),

71 which aims to construct a map of the complete macro-

72 scopic structural and functional neural connections of

73 the human brain in vivo within and across healthy individ-

74 uals, and the Alzheimer’s Disease Neuroimaging Initiative

75 (ADNI) study (Jack et al., 2010), which is a longitudinal

76 multi-center observational study of healthy elders and

77 patients with mild cognitive impairment and Alzheimer’s

78 disease, have recently been conducted to overcome the

79 limited power of smaller studies and to increase the sen-

80 sitivity and reliability of the findings. These studies include

81 diffusion-weighted MRI as part of the imaging protocol to

82 map the macroscopic structural connections of the brain

83 and their variability, and to identify disease-related alter-

84 ations in the white matter. These large-scale brain imag-

85 ing studies have made anonymized data, including

86 imaging and clinical information and DNA sequences,

87 widely available to the scientific community for examina-

88 tion and exploration.

89 Brain function and performance differ individually. The

90 identification of individual differences in neural

91 connections (white matter diffusivity) of the brain is

92 important to study the background of individual

93 differences in brain function and performance. In the

94 present study, we investigated whether the pattern of

95 brain diffusion is discernibly different among individuals;

96 i.e., whether brain diffusivity is personally identifiable

97 information. Using DTI data from 224 healthy subjects

98 scanned twice, for this purpose, we performed brain

99 recognition by spatial normalization of fractional

100 anisotropy (FA) maps, feature extraction based on

101 Principal Component Analysis (PCA), and calculation of

102 the Euclidean distances between image pairs projected

103 into the subspace. To our knowledge, there have been

104 no previous studies that examined whether diffusion-

105 weighted MRI can be used to identify a specific person

106 and that have evaluated inter-individual differences in

107 brain diffusivity from the point of view of biometrics.

108 EXPERIMENTAL PROCEDURES

109 Subjects and imaging data acquisition

110 The present study included data from 224 healthy

111 subjects (161 males and 63 females; mean age,

112 57 ± 10 years; age range, 40–83 years) (Takao et al.,

113 2011c, 2012). None of the subjects had a history of neu-

114 ropsychiatric disorders including serious head trauma,

115 psychiatric disorder, or alcohol/substance abuse or

116 dependence. The mean Mini-Mental State Examination

117 score was 29.6 ± 0.7 (range, 27–30). A board-certified

118 radiologist reviewed all scans (including T1-weighted

119 and T2-weighted images) and found no gross

120abnormalities such as infarct, hemorrhage, or brain tumor

121in any of the subjects. The Fazekas score (range, 0–3),

122which is a four-point rating scale of white matter hyperin-

123tensities, was 0 (absence) or 1 (caps, pencil-thin lining

124and/or punctate foci) (Fazekas et al., 1987). The ethics

125committee of the University of Tokyo Hospital approved

126this study. After a complete explanation of the study to

127each subject, written informed consent was obtained.

128MR data were obtained on two 3.0-T Signa scanners

129(GE Medical Systems, Milwaukee, WI, USA with an 8-

130channel brain phased-array coil. Both scanners were the

131exact same model, and were simultaneously upgraded

132from HDx to HDxt during the scan period. Each subject

133was scanned twice at an interval of about 1 year (mean

134interval, 1.0 ± 0.1 years; range, 0.6–1.3 years) (Takao

135et al., 2011c, 2012). Table 1 shows the number of sub-

136jects for the different scanner combinations, and those

137of subjects with and without scanner upgrade between

138the two scans.

139Diffusion tensor images were acquired using a single-

140shot spin-echo echo-planar sequence in 50 axial slices

141(repetition time = 13,200 ms; echo time = 62 ms; field

142of view = 288 mm; slice thickness = 3 mm with no gap;

143acquisition matrix = 96 � 96; number of excitations = 1;

144image matrix = 256 � 256). Diffusion weighting was

145applied along 13 non-collinear directions with a b-value
146of 1000 s/mm2 and a single volume was collected with

147no diffusion gradients applied (b0). Parallel imaging

148(ASSET; Array Spatial Sensitivity Encoding Technique)

149was used with an acceleration factor of 2.0. The

150acquired and reconstructed voxel dimensions were

1513.0 � 3.0 � 3.0 mm and 1.125 � 1.125 � 3.0 mm,

152respectively.

153The raw diffusion tensor images were corrected for

154eddy current distortion and head motion using FMRIB’s

155Diffusion Toolbox (FDT) 2.0 (Smith et al., 2004), and cor-

156rected for spatial distortion due to gradient non-linearity

157using grad_unwarp (Jovicich et al., 2006; Takao et al.,

1582010a). Following brain extraction using Brain Extraction

159Tool (BET) 2.1 (Smith, 2002), FA maps were created by

160fitting a tensor model to the diffusion data using FDT.

161PCA-based brain recognition

162Image processing was performed mainly using MATLAB

1637.13 (Mathworks, Sherborn, MA, USA) and FSL (FMRIB

164Software Library) 4.1 software (http://www.fmrib.ox.ac.

165uk/fsl) developed at the Oxford Centre for Functional

Table 1. Combinations of scanners used for image pairs and the

presence or absence of scanner upgrade between the two scans

First scan Second scan

Scanner combination

A (n= 70) Scanner 1 Scanner 1

B (n= 45) Scanner 1 Scanner 2

C (n= 56) Scanner 2 Scanner 1

D (n= 53) Scanner 2 Scanner 2

With or without scanner upgrade

Upgrade � (n= 159) Before upgrade Before upgrade

Upgrade + (n= 65) Before upgrade After upgrade
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