
THE STRUCTURE OF NETWORKS THAT PRODUCE THE
TRANSFORMATION FROM GRID CELLS TO PLACE CELLS

S. CHENG1* AND L. M. FRANK2

Sloan-Swartz Center for Theoretical Neurobiology, W.M. Keck Center
for Integrative Neuroscience and Department of Physiology, University
of California, San Francisco, CA 94143-0444, USA

Abstract—Since grid cells were discovered in the medial
entorhinal cortex, several models have been proposed for the
transformation from periodic grids to the punctate place
fields of hippocampal place cells. These prior studies have
each focused primarily on a particular model structure. By
contrast, the goal of this study is to understand the general
nature of the solutions that generate the grids-to-places
transformation, and to exploit this insight to solve problems
that were previously unsolved. First, we derive a family of
feedforward networks that generate the grids-to-places trans-
formations. These networks have in common an inverse re-
lationship between the synaptic weights and a grid property
that we call the normalized offset. Second, we analyze the
solutions of prior models in terms of this novel measure and
found to our surprise that almost all prior models yield solu-
tions that can be described by this family of networks. The
one exception is a model that is unrealistically sensitive to
noise. Third, with this insight into the structure of the solu-
tions, we then construct explicitly solutions for the grids-to-
places transformation with multiple spatial maps, that is, with
place fields in arbitrary locations either within the same (mul-
tiple place fields) or in different (global remapping) enclo-
sures. These multiple maps are possible because the weights
are learned or assigned in such a way that a group of weights
contributes to spatial specificity in one context but remains
spatially unstructured in another context. Fourth, we find
parameters such that global remapping solutions can be
found by synaptic learning in spiking neurons, despite pre-
vious suggestions that this might not be possible. In conclu-
sion, our results demonstrate the power of understanding the
structure of the solutions and suggest that we may have
identified the structure that is common to all robust solutions
of the grids-to-places transformation. © 2011 IBRO. Pub-
lished by Elsevier Ltd. All rights reserved.
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Four decades ago, O’Keefe and Dostrovsky discovered
place cells, neurons in the hippocampus that are selectively
active in one or more restricted regions of space, called place
fields (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel,
1978). Since their discovery, many models have attempted
to explain how this spatial selectivity arises within the
hippocampus (Samsonovich and McNaughton, 1997; Káli
and Dayan, 2000; Hartley et al., 2000; Barry and Burgess,
2007). With the discovery of grid cells in the medial ento-
rhinal cortex (MEC), the input structure to the hippocam-
pus (Hafting et al., 2005), the problem of explaining the
neural representation of space has shifted to focus on two
separate questions: first, how does the periodic firing of
hexagonal grid cells in the MEC emerge (Fuhs and
Touretzky, 2006; McNaughton et al., 2006; Giocomo et al.,
2007; Burgess et al., 2007; Burgess, 2008; Hasselmo and
Brandon, 2008; Kropff and Treves, 2008; Burak and Fiete,
2009; Mhatre et al., in press)? and second, how are the
periodic grids in the MEC transformed into punctate place
fields in the hippocampus (Fuhs and Touretzky, 2006;
Solstad et al., 2006; Rolls et al., 2006; Franzius et al.,
2007; Blair et al., 2007; Gorchetchnikov and Grossberg,
2007; Molter and Yamaguchi, 2008; Si and Treves, 2009;
de Almeida et al., 2009; Savelli and Knierim, 2010)? In this
article, we focus on the latter question. We note, however,
that there are alternatives to this simple view of how spatial
representations arise in the hippocampus. We return to
this issue in the Discussion.

The earliest model of the grids-to-places transforma-
tion viewed grid cells as the basis functions of a Fourier
transformation and synaptic weights from MEC to hip-
pocampus as the coefficients (Solstad et al., 2006). Other
models are based on competition in the hippocampal layer:
the summed input to a hippocampal cell from grid cells is
only weakly spatially selective, but competition allows only
the hippocampal cells with the strongest excitation at any
given location to become active, thus increasing the spatial
selectivity (Fuhs and Touretzky, 2006; Rolls et al., 2006;
Gorchetchnikov and Grossberg, 2007; Molter and Yama-
guchi, 2008; Si and Treves, 2009; de Almeida et al., 2009;
Monaco and Abbott, 2011). Franzius et al. (2007) suggest
that maximizing sparseness in periodic grid inputs leads to
punctate place fields in the output of independent compo-
nents analysis. Recently, Savelli and Knierim (2010) stud-
ied a Hebbian learning rule that could learn the weights in
a feedforward network to generate the grids-to-places
transformation. A few studies have also examined the
network structure that produces the transformation (Sol-
stad et al., 2006; Gorchetchnikov and Grossberg, 2007),
but these solutions appear to be similar to each other, and
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it is not clear how they are related to the solutions of other
models.

Here we derive a solution for the grids-to-places trans-
formation that was previously unknown, at least in its gen-
eral and explicit form. We then study the solutions of other
models in ways that the original authors of those models
had not. We find that all examined models, but one (Blair et
al., 2007), yield solutions with very similar structures de-
spite their apparent differences. We then present solutions
for multiple place fields in one environment and distinct
place fields across different environments (Muller and Ku-
bie, 1987; Leutgeb et al., 2005; Fyhn et al., 2007). While
other authors before us have hypothesized mechanisms to
account for these two phenomena (Solstad et al., 2006;
Rolls et al., 2006; Fyhn et al., 2007; de Almeida et al.,
2009; Savelli and Knierim, 2010) no prior study has explic-
itly demonstrated a working solution where they could
control the number and locations of place fields. We also
find that multiple spatial maps can be learned by a local
synaptic learning in a spiking network, something that
Savelli and Knierim (2010) hypothesized to not be possi-
ble: “Any feed-forward model that implicates plasticity in
the formation of place fields from only grid-cell inputs [. . .]
is unlikely to account spontaneously for the memory of
many place field maps [. . .]”.

EXPERIMENTAL PROCEDURES

This article focuses on understanding the structure of the solutions
for the grids-to-places transformation and exploiting that insight to
construct and learn specific solutions. A major goal of this article
is to study the solutions of prior models that are still not very well
understood. In this section, we briefly describe these prior models
as well as some of our novel analysis methods.

Grid cell firing maps

The rate map of grid cells over space (x�) can be described by a
sum of three 2-d sinusoids (see Solstad et al., 2006; Blair et al.,
2007):
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where �j represents the orientation of the grid. An example of a
grid cell firing map is shown in Fig. 1A. Since the sum of cosines
in Eq. 1 yields values between �3/2 and 3, the linear transforma-
tion ensures that the rates of grid cells are always positive. Using
other gain functions does not seem to affect the grids-to-places
transformation (Blair et al., 2007). We used different numbers of
grid cells (N) as indicated throughout this paper. As observed
experimentally (Hafting et al., 2005), co-localized cells in our
simulations (n � 10) share the same grid spacing aj, and orien-
tation �j, but each grid cell has its own independent spatial phase
�j. Grid spacings were drawn from a uniform distribution between
30 cm and 70 cm, orientations were uniformly distributed between
0° and 360°. Both grid spacings and orientations were indepen-
dent between groups of grid cell with different spacings, except in
one simulation, in which we studied the effect of aligning all grids
at the same orientation as suggested by preliminary results (Sten-
sland et al., 2010).
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Fig. 1. Definition of models and normalized offset. (A) Schematic of grid cell firing rate map. As in all firing rate and activation maps in this article, red
indicates maximum, while blue denotes zero. (B) The normalized offset is defined as the shortest distance between the reference point P and the
locations of the firing field peaks Fk, divided by the grid spacing. Gray disks mark regions of elevated firing rate. (C) Schematic of key properties of
normalized offset. For any point P within the equilateral triangle, those located within the gray-shaded area are closest to the vertex on the left. The
normalized offsets with respect to all points in the green-shaded section are the same 	. The red line shows the maximum normalized offset that can
occur in 2-d 	max �1 ⁄�3. (D) Example of grid cell spiking. Shown is a 10-min session of random exploration. The simulated trajectory of the virtual
animal is shown in gray. Each spike is marked by a black dot at the animal’s location when the spike occurred. (E) Feedforward network architecture
used in this study. The hippocampal cell receives the weighted sum of grid cell inputs. (F) Time course of evoked post-synaptic potential.
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