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Abstract—Grip force modulation has a rich history of re-
search, but the results remain to be integrated as a neuro-
computational model and applied in a robotic system. Adap-
tive grip force control as exhibited by humans would enable
robots to handle objects with sufficient yet minimal force,
thus minimizing the risk of crushing objects or inadvertently
dropping them. We investigated the feasibility of grip force
control by means of a biological neural approach to ascertain
the possibilities for future application in robotics. As the
cerebellum appears crucial for adequate grip force control,
we tested a computational model of the olivo-cerebellar sys-
tem. This model takes into account that the processing of
sensory signals introduces a 100 ms delay, and because of
this delay, the system needs to learn anticipatory rather than
feedback control. For training, we considered three scenarios
for feedback information: (1) grip force error estimation, (2)
sensory input on deformation of the fingertips, and (3) as a
control, noise. The system was trained on a data set consist-
ing of force and acceleration recordings from human test
subjects. Our results show that the cerebellar model is capa-
ble of learning and performing anticipatory grip force control
closely resembling that of human test subjects despite the
delay. The system performs best if the delayed feedback
signal carries an error estimation, but it can also perform well
when sensory data are used instead. Thus, these tests indi-
cate that a cerebellar neural network can indeed serve well in
anticipatory grip force control not only in a biological but also
in an artificial system. © 2009 IBRO. Published by Elsevier
Ltd. All rights reserved.
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In our daily lives, we frequently handle objects without
much thought. However, applying an adequate amount of
grip force to an object being handled requires tight coor-
dination with the dynamics of other applied forces. Let us
consider the case of a robot handling an object. Its task is
to simply hold it in its hand while the arm or body is being

moved. The robot would ideally perform this task with
minimal grip force, thus preserving energy and—more im-
portantly—minimizing the risk of crushing the object, which
is a realistic risk when, e.g. holding a Styrofoam cup.
Unfortunately, using the same low amount of force con-
stantly will not suffice, because any movement of the robot
hand or arm will automatically apply a force to any object
that is being handled. Because of this, inertial loads can
fluctuate, possibly causing the object to slip from the ro-
bot’s grasp and fall. Thus, grip force needs to be modified
on occasion. Relying solely on sensory feedback to solve
this problem may not be a feasible approach, since the
processing of sensory data may well take too long, espe-
cially if the movements are fast. In short, the system has to
anticipate changes in load force based on its movements
and adjust its grip accordingly, so as to prevent to crush or
drop the object it is holding.

Grip force modulation has been studied extensively in
humans. Healthy human test subjects tend to hold objects
with near-minimal grip force (Johansson and Westling,
1984) and adjust this force in synchrony with or even prior
to the object’s load force changes during movement, indi-
cating anticipation (Flanagan and Wing, 1993; Flanagan et
al., 2003). Indeed, anticipation is needed since sensory
feedback arrives with a delay. This delay is also reflected
by the fact that changes in motor behavior due to an
unexpected event usually occur at a latency of about 100
ms (Johansson and Westling, 1987; Cole and Abbs, 1988).

Positron emission tomography (PET) scans reveal that
the cerebellum plays a major role during grip force–load
force coupled tasks (Boecker et al., 2005). Patients with a
damaged cerebellum lack the tight coordination of grip and
load force, often exerting more grip force than needed and
having difficulties in timing motor actions e.g. to compen-
sate for predictable perturbations (Babin-Ratté et al., 1999;
Nowak et al., 2002; Serrien and Wiesendanger, 1999).
Lesions in other areas involved in motor control such as
the cerebral cortex or striatum result in paralysis or invol-
untary movement rather than a loss of coordination.

The cerebellum has a well-known neural structure and
plays an important role in motor control in general (De
Zeeuw and Yeo, 2005). Thus, it is not surprising that its
network served as the basis for numerous computational
models (Albus, 1975; Medina et al., 2000; Spoelstra et al.,
2000; Porrill et al., 2004; Yamazaki and Tanaka, 2007).
Here, we investigated the feasibility of using a cerebellar
model to control grip force.

Outline

In the following sections, a brief overview of the cerebellum
and interpretation of its functionality will be given first. After
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that, the dataset and model used for the current work will
be described. Finally, the results are presented and the
current work will be discussed.

The olivo-cerebellar system

The cerebellum has two main input channels: the mossy
fibers (MF) and the climbing fibers (CF). Both inputs are
excitatory. The first carry signals originating from many
different regions such as the pons, lower brainstem re-
gions, and spinal cord, while the second solely carries
signals from the inferior olivary nucleus (IO) in the ventral
medulla oblongata. Interestingly, the inferior olive receives
its inputs directly or indirectly from many of the regions that
also give rise to one of the MF projections (De Zeeuw et
al., 1998). Unlike the IO signals, which relay all or none
signals at the Purkinje cell (PC) level, the MF signals
undergo some form of recoding before arriving in the PC
layer: they terminate in the granule cell (GC) layer where
combinations of various MF signals are integrated with a
feedback from the Golgi cells (GO) into parallel fiber (PF)
signals, which in turn are carried to the PCs. Because the
number of PFs is much higher than that of the MFs, it has
been suggested that expansion recoding occurs (Albus,
1975; Spoelstra et al., 2000). The PFs and CFs co-termi-
nate in the PC layer of the cerebellum, where synaptic
weights are modified. It is generally believed that for this
single layer of cells, the PF signals provide a current motor
command and delayed sensory context, whereas the CFs
may carry an error signal. This take on the cerebellum is
known as the Marr-Albus-Ito hypothesis (Marr, 1969; Al-
bus, 1971; Ito, 1984). The output of the PCs is sent to the
deep cerebellar nuclei (DCN), where they merge with the
input from both MF and CF collaterals and where the final
output of the cerebellum is generated. Thus, the cerebel-
lum is reminiscent of a simple perceptron and as such it
may learn to apply an inverse or forward model based on
its input. Inverse models enable a system to generate the
desired output by producing the command that achieves a
given desired state based on the current state of the sys-
tem. Forward models can overcome feedback delays by
predicting the result of a current command, given the cur-
rent state of the system. Both models would have to be
under continuous revision based on sensory input. There
are indications that both types of model are used by the
motor apparatus, and it has been suggested that the cer-
ebellum may function as an inverse model that overcomes
time delays using forward models (Wolpert et al., 1998).

The complexity of its cellular configurations and con-
nections, among other things, sets the cerebellum apart
from a standard perceptron. For instance, the GCs are all
excitatory, while all PCs generate inhibitory output. In ad-
dition, both the granular layer and molecular layer of the
cerebellar cortex have inhibitory interneurons; these in-
clude the GOs, which inhibit the GCs, and the stellate cells
(SC) and basket cells (BC), which inhibit the PCs.

The interaction of the cerebellum with the IO also sets
it apart from a simple perceptron. PCs inhibit both excita-
tory and inhibitory neurons in the DCN, the latter ones of
which inhibit the IO neurons that provide the CFs to the

PCs. Thus, the result is a topographically organized loop
that is specific down to the cellular level. Interestingly, the
olivary neurons are electrotonically coupled to each other
and have a tendency to oscillate (Van Der Giessen et al.,
2008). Moreover, due to their conductances, olivary neu-
rons have a very low firing frequency with a maximum rate
of 10 Hz (Llinás and Volkind, 1973) and a spontaneous
activity of 2 Hz or less (Yeo and Hesslow, 1998). This
arrangement implies that the cerebellum receives rela-
tively few corrective signals, even when learning a new
task.

The computational model

Input data. To provide the system with input and test
the system’s output, we constructed our own dataset of
human grip force behavior with recordings acquired from
nine healthy adult test subjects (A, B, C, D, E, F, G, H and
I). During right-handed point-to-point vertical arm move-
ments with an amplitude of approximately 30 cm, pausing
after every upward and downward motion (as described in
Nowak et al., 2002), participants held a manipulandum
(see Fig. 1) that registered accelerations in 3D, grip force
and torque on the grip force axis. The manipulandum could
be outfitted with surfaces of varying roughness to establish
different baseline grip force levels. These materials in-
cluded, in order of increasing roughness, paper, Plexiglas
and sandpaper. A total of 35 traces, each consisting of five
downward and five upward movements with pauses in
between, spanning approximately 20 s on average, was
gathered and used. Appendix A contains an overview of
the number of traces per subject and surface texture, as

Fig. 1. The manipulandum with Plexiglas surfaces being held. The
black sensor registers force and torque exerted on the gripped sur-
faces. The top-mounted white sensor registers accelerations in three
dimensional space.
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