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h  i g  h  l  i  g  h  t  s

• We  present  a new  method  to  classify  Parkinson’s  disease  via  deterministic  learning  theory.
• The  dynamics  of gait motions  can  be learned  by  using  RBF  neural  networks.
• The  Parkinson’s  diseases  can  be  classified  based on  the smallest  error  principle.
• The  discriminability  provided  by  the  vertical  ground  reaction  force  feature  is  strong.
• We  show  good  classify  performance  on the  well-known  PhysioBank  database.
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a  b  s  t  r  a  c  t

Gait  analysis  plays  an important  role in  maintaining  the well-being  of human  mobility  and  health  care,
and  is a  valuable  tool  for obtaining  quantitative  information  on  motor  deficits  in  Parkinson’s  disease  (PD).
In this  paper,  we  propose  a method  to  classify  (diagnose)  patients  with  PD and  healthy  control  subjects
using  gait  analysis  via  deterministic  learning  theory.  The  classification  approach  consists  of two  phases:
a  training  phase  and  a  classification  phase.  In the training  phase,  gait  characteristics  represented  by  the
gait  dynamics  are derived  from  the vertical  ground  reaction  forces  under  the  usual  and  self-selected
paces  of the  subjects.  The  gait dynamics  underlying  gait patterns  of healthy  controls  and  PD patients  are
locally  accurately  approximated  by radial  basis  function  (RBF)  neural  networks.  The obtained  knowledge
of  approximated  gait  dynamics  is  stored  in constant  RBF  networks.  The  gait  patterns  of  healthy  controls
and  PD  patients  constitute  a training  set. In the classification  phase,  a bank  of dynamical  estimators
is  constructed  for all the  training  gait  patterns.  Prior  knowledge  of  gait  dynamics  represented  by the
constant  RBF  networks  is embedded  in  the  estimators.  By comparing  the  set  of  estimators  with  a  test  gait
pattern  of a certain  PD  patient  to  be classified  (diagnosed),  a set of  classification  errors  are  generated.
The  average  L1 norms  of  the  errors  are  taken  as  the  classification  measure  between  the  dynamics  of
the  training  gait  patterns  and  the  dynamics  of the  test  PD  gait  pattern  according  to the  smallest  error
principle.  When  the gait  patterns  of  93  PD patients  and  73  healthy  controls  are  classified  with  five-fold
cross-validation  method,  the accuracy,  sensitivity  and  specificity  of  the  results  are  96.39%,  96.77%  and
95.89%,  respectively.  Based  on  the  results,  it may  be claimed  that the  features  and  the  classifiers  used
in  the  present  study  could  effectively  separate  the  gait  patterns  between  the groups  of PD patients  and
healthy  controls.

© 2016 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Parkinson’s disease (PD) is a typical disorder of the basal gan-
glia. It is associated with characteristic changes in resting tremor,
muscle rigidity, bradykinesia, and postural instability; all of which
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increase the risk of gait instability [1]. The primary symptoms are
due to decreased stimulation of the motor cortex by the basal
ganglia.

Exact diagnosis of PD may  be delayed in early stages, as struc-
tural neuroimaging methods do not provide characteristic features
to allow the diagnosis of PD [2]. Since two cardinal PD symptoms
(postural instability and rigidity) alter the gait patterns, gait anal-
ysis may  help PD diagnosis (classification). Gait information has
been widely used for the movement studies in healthy controls
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and also in subjects with PD. Analysis of gait parameters is very
useful for a better understanding of the mechanisms of movement
disorders, and also has the high potential in presenting automatic
non-invasive method based on gait characteristics for the diagno-
sis of PD [3]. To classify PD patients and healthy control subjects,
kinetic, spatio-temporal, power spectral, and fractal parameters
of the gait, have been used in previous studies [4–15]. Different
methods have tried to analyze the PD quantitatively: some studies
wanted to analyze the PD symptoms quantitatively, some studies
tried to model the PD, and some of them studied the disease with
dynamical systems view.

Jeon et al. [16] studied the classification of PD patients and
healthy controls using spatial-temporal image of plantar pressure.
They also used support vector machine classifier by kernel func-
tion. Mariani et al. [17] studied an innovative technology based on
on-shoe wearable sensors and processing algorithm to provide out-
come measures, which included turning, swing width, path length,
and their intercycle variability. They were used to characterize PD
motor symptoms and classify between PD patients and healthy
controls. Wu and Krishnan [18] studied the nonparametric Parzen-
window method to estimate the probability density functions of
stride interval and its two subphases. Their study demonstrated
that the gait variability, in terms of statistical parameters of stride
interval, would be increased in PD. The least squares support vector
machine with polynomial kernels was able to provide a classifica-
tion accurate rate of 90.32% between 16 PD patients and 13 healthy
controls.

Besides the analysis of PD symptoms (e.g., gait), modeling
approaches have also been used for PD evaluation and some of them
presented good findings or hypotheses. In 2005, Haeri et al. [19]
focused on basal ganglia structure and presented a mathematical
model for tremor. While being a simple model and accepting some
assumptions as considering the tremor to be simple sinusoidal
signals, the role of drugs and deep brain stimulation treatments
were simulated fairly suitable and clinically plausible. Pascolo et al.
[20] evaluated time series of posture variations in normal and PD
patients, four cases in each group. They showed that normal and
PD patients had some differences in chaotic features. They have
emphasized that more studies were needed to show these chaotic
differences. In 2012, Sarbaz et al. [21] used the sine circle map
relation for simulating the basal ganglia structure. This relation
could explain the complex behaviors and the complex structure
of the basal ganglia. There was a significant difference between the
model parameter of normal and PD patients which could be used
to distinguish the two groups.

Our primary interest in this paper is to investigate if the ground
reaction force (GRF), which is the kinetic parameter of gait, can
be used to distinguish between PD patients and healthy controls.
Measurements on these two groups have shown that: (a) the GRF
displays a characteristic pattern due to cardiac activity; (b) the GRF
contains valuable quantitative data of gait characteristics, reflecting
effects of internal and external forces [22–24]. It has been used for
evaluation of human movement [22,25], diagnosis [26], and pat-
tern recognition [27]. Lee and Lim [28] extracted wavelet-based
features from the vertical GRFs using the gait characteristics of
idiopathic PD patients. Then, they used the features as inputs of
the neural network with weighted fuzzy membership functions
to classify both idiopathic PD patients and healthy controls. Daliri
[29] used the vertical GRFs computed by using 8 sensors placed
underneath of each foot. The short-time Fourier transform was
used to extract several features from the spectral of time series
forces and histograms of these features were then formed. The dis-
tances between histograms were computed using the chi-square
distance and a kernel was created from these distances. The sup-
port vector machines were used finally to classify PD patients and
healthy controls. Inspired by the above studies, we attempt the

classification of PD based on the difference of gait dynamics rep-
resented by the vertical GRFs between PD patients and healthy
controls.

The aim of this study is to develop a new method using gait
analysis to classify (diagnose) patients with PD and healthy con-
trol subjects via deterministic learning theory. The classification
approach consists of two  phases: a training phase and a classifica-
tion phase. In the training phase, gait characteristics represented by
gait dynamics are derived from the vertical GRFs under the usual,
self-selected paces of the subjects. Gait dynamics underlying gait
patterns of healthy controls and PD patients are locally accurately
approximated by radial basis function (RBF) neural network (NN).
The obtained knowledge of approximated gait dynamics is stored
in constant RBF networks. The gait patterns of healthy controls and
PD patients constitute a training set. In the classification phase, a
bank of dynamical estimators is constructed for all the training gait
patterns. Prior knowledge of gait dynamics represented by the con-
stant RBF networks is embedded in the estimators. By comparing
the set of estimators with a test gait pattern of a certain PD patient to
be classified (diagnosed), a set of classification errors are generated.
The average L1 norms of the errors are taken as the classification
measure between the dynamics of the training gait patterns and the
dynamics of the test PD gait pattern according to the smallest error
principle. The proposed method can effectively separate the gait
patterns between the groups of healthy controls and PD patients.

The rest of the paper is organized as follows. Section 2 introduces
preliminary knowledge about deterministic learning theory and
problem formulation. Section 3 describes the proposed method.
This includes the data description, feature extraction and selec-
tion, learning and classification mechanisms. Section 4 presents
experimental results. Section 6 contains the conclusions.

2. Preliminaries and problem formulation

2.1. Deterministic learning theory

In deterministic learning theory, identification of system
dynamics of general nonlinear systems is achieved according to
the following elements: (i) employment of localized RBF networks;
(ii) satisfaction of a partial persistence of excitation (PE) condition;
(iii) exponential stability of the adaptive system along the periodic
or recurrent orbit; (iv) locally-accurate NN approximation of the
unknown system dynamics [30,31].

The RBF networks can be described by fnn(Z) =∑N
i=1wisi(Z) = WT S(Z), where Z ∈ �Z ⊂ Rp is the input vec-

tor, W = [w1, . . ., wN]T ∈ RN is the weight vector, N is the
NN node number, and S(Z) = [s1(‖Z − �1 ‖), . . .,  sN(‖Z − �N ‖)]T,
with si(·) being a radial basis function, and �i(i = 1, . . .,  N)
being distinct points in state space. The Gaussian function
si(‖Z − �i‖) = exp[(−(Z − �i)

T (Z − �i))/�2
i
] is one of the most

commonly used radial basis functions, where �i = [�i1, �i2, . . .,
�iN]T is the center of the receptive field and �i is the width of
the receptive field. The Gaussian function belongs to the class of
localized radial basis functions in the sense that si(‖Z − �i ‖) → 0 as
‖Z ‖ → ∞.

It has been shown in [32] that for any continuous function
f(Z) : �Z → R where �Z ⊂ Rp is a compact set, and for the NN approx-
imator, where the node number N is sufficiently large, there exists
an ideal constant weight vector W*, such that for each � * >0,
f(Z) = W*TS(Z) + �(Z), ∀Z ∈ �Z, where |�(Z) < � * | is the approxima-
tion error. Moreover, for any bounded trajectory Z�(t) within the
compact set �Z, f(Z) can be approximated by using a limited num-
ber of neurons located in a local region along the trajectory: f (Z) =
W∗T

� S�(Z) + �� , where S�(Z) = [sj1 (Z), . . .,  sj� (Z)]T ∈ RN� , with N� <

N, |sji
| > �(ji = j1, . . .,  j�), � > 0 is a small positive constant, W�∗ =
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