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• We  present  a computational  model  for  a proposed  cost-conflict  monitoring  system.
• We  use  the  model  to simulate  human  performance  in  a  learning  task.
• The  model  integrates  reinforcement  learning  and  conflict  monitoring  theories.
• The  results  indicate  that  the  model  can  simulate  human  performance  in  the  task.
• We  show  that  the  model  can  account  for  both  the  FRN  and  the  ERN.
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a  b  s  t  r  a  c  t

Flexible  goal-directed  behavior  requires  monitor-control  networks  to detect  the  need  for  behavioral
adjustments  and  to implement  the required  regulations.  Among  event-related  brain  potentials  related
to  the  function  of  such  networks  is the  feedback-related  negativity  (FRN),  which  is detected  in trial-and-
error  learning  tasks.  Conflict  monitoring  theory  (CMT)  as one  of the  influential  theories  of  such  networks
cannot  describe  the FRN.  Recently,  we  have  proposed  a cost-conflict  monitoring  system  that  extends  the
CMT.  The  cost-conflict  monitoring  holds  that  the  monitoring  system  can  detect  conflict  signal,  but  the
conflict  is over  the  costs  of alternative  outcomes  of  the  selected  action  rather  than  the  response  conflict
as  proposed  by  the  CMT.  In  the  cost-conflict  monitoring,  cost  functions  are  computed  based  on waiting
times  from  the  response  to  feedback  delivery  and  from  these  quantities  a conflict  signal  is derived.  Here,
we present  a  computational  realization  of  such  cost-conflict  monitor-controller  network.  We  utilize  this
computational  model  to  simulate  existing  human  performance  and  ERP  data  of a trial-and-error  learning
task.  The  model  successfully  simulated  the  behavioral  data  and  FRN  signals  under  different  conditions  in
this task.

©  2016 Elsevier  Ireland  Ltd.  All  rights  reserved.

1. Introduction

Monitoring and evaluating outcomes of actions and applying
appropriate cognitive regulations and behavioral adaptations play
a crucial role in decision-making and goal-directed behavior. In
monitor-control loops responsible for such functions [1], the moni-
toring system detects the need for control, whose realization seems
to be reflected in some components of event-related potentials
(ERPs) [2]. The feedback-related negativity (FRN) as one of these

∗ Corresponding author at: Sareh Zendehrouh, School of Cognitive Sciences, Insti-
tute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Niavaran
Sqr, Tehran, Iran.

E-mail addresses: sareh.zendehrouh@gmail.com, szendehrouh@ipm.ir
(S. Zendehrouh).

components is observed in gambling and trial-and-error learning
tasks [3] and peaks between 230 and 330 msec after feedback pre-
sentation [4].

The reinforcement learning (RL) account of such monitor-
control loops [5,6] draws on the evidence indicating the
resemblance between the phasic activity of dopamine neurons in
the brain stem nuclei and reward prediction errors (RPEs) in tem-
poral difference models of computational RL [7]. According to this
theory, the output of the monitor located in the basal ganglia is
conveyed to frontal areas in the form of phasic activity of dopamine
neurons or RPE. The theory holds that the anterior cingulate cor-
tex (ACC) uses these RPEs to improve performance and generates
the FRN when receives negative RPEs, indicating the occurrence of
an unexpected error feedback [6]. According to another competing
theory, the conflict-monitoring theory (CMT) [8,9], the ACC moni-
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tors for conflicts during motor response generation as an index of
the need for further control. The CMT  suggests that the ACC acts as
a response-conflict monitor that detects the simultaneous activa-
tion of competing motor responses, measures the conflict and sends
this information to the dorsolateral prefrontal cortex to implement
compensatory adjustments [8,9]. Nevertheless, the CMT  cannot
account for the FRN [6,9] which emerges when there is no acti-
vated motor response [1]. Although, the ACC was  first discovered
to be activated by the conflict between response representations,
further investigations showed that the ACC can also be activated
by conflicts between representations like semantic or conceptual
[10,11]. It has been suggested that conflict might arise anywhere
in the information processing system and might not be confined
to the conflict between responses. In this view, the ACC detects a
conflict between mutually active, competing representations and
employs the dorsolateral prefrontal cortex to deal with the conflict
[12]. Recently, we have proposed a cost-conflict monitor alongside
the response-conflict monitor in the brain, which can extend the
CMT  to explain the FRN [13]. One of the ideas behind the proposed
model of cost-conflict monitor is the ability of the brain in making
retrospective reevaluations.

We specifically hypothesized that the subjective estimations
of costs for likely outcomes of the selected action can be consid-
ered as the competing representations in the post response period.
There is a consensus among neuroscientist that the passage of time
can discount the value of a reward. Reward discounting can hap-
pen across several timescales [14]. Behavioral data from human
beings and animals regarding reward discounting match well with
a hyperbolic function of time [15]. In addition, investigation shows
that the time passage also reduces the aversiveness of a negative
event and obeys a hyperbolic function [16]. Therefore, because of
the time interval between response selection and feedback presen-
tation, each outcome carries a cost. Here we show that if humans
revise their estimation of cost after receiving a feedback, the simul-
taneous activation of mutually exclusive estimations may  lead to a
cost-conflict signal.

2. Proposed model

2.1. The simulated task

In this paper, we have simulated the experimental data (Exper-
iment 3) of the Holroyd et al. study [17] which is a trial-and-error
learning task. Fifteen subjects had participated in the task. For every
participant, there were three blocks of 300 trials. Thus, 900 trials
were obtained for each participant. On each trial, a visual image
of an object or an animal is displayed as a stimulus. Participants
were asked to make a response by pressing a left mouse button
(left response) or a right mouse button (right response). Response
selection is then followed by one of six feedback conditions. Thus,
learning occurs through trial-and-error efforts. For each stimulus,
there is a probability of receiving a reward (on 20%, 50%, or 80% of
the trials) only for the optimal response. The 80%, 50%, and 20%
reward conditions are considered as the expected, control, and
unexpected conditions, respectively [17].

2.2. The structure of the model

Reinforcement learning is one of the learning methods that
has rich links with the neuroscience of decision-making and goal-
directed behavior. With the sub-aim of conflating RL and conflict
monitoring accounts of monitor-control loops, we  used the prin-
ciples of computational RL as the main basis for the proposed
model. The original model of the RL theory uses temporal difference
(TD) methods of the computational RL [6]. The TD mechanism is a

model-free method that learns cached values of actions and better
accounts for habitual behaviors or learning of stimulus-response (S-
R) associations, while model-based methods learn the model of the
environment to evaluate candidate actions and can better describe
goal-directed behaviors [18,19] or learning of response-outcome
(R-O) contingencies [20]. In a novel environment in which S-R
mappings have not been learned [21] response selection is largely
goal-directed and is controlled mainly by R-O associations [22].
Therefore, model-based RL is a better modeling tool for simulating
trial-and-error learnings.

2.2.1. Response generation and value estimation
In the RL framework, a transition matrix denoted byT(s, a, s′)

represents the probability of reaching state s′ after taking action a
at state s [23]. After each state transition that occurs after receiving
a feedback, the state transition matrix is updated as follows:

T
(

s, a, ŝ
)

=
{

(1 − �) T
(

s, a, ŝ
)

+ � if ŝ = s′

(1 − �) T
(

s, a, ŝ
)

otherwise
(1)

where, s is the stimulus state, a is the taken action in that state, and
s′ is the reaching state. 0 < � < 1 is the update rate of the transition
matrix.

The value of each state-action pair (Q (s, a)) is updated using the
transition matrix and the received feedback:

Q (s, a) =
∑

s′
T
(

s, a, s′) (r(s, a, s′) + �V(s′)) (2)

where r is the amount of the reward (=1 and 0 for a rewarding and
non-rewarding feedback, respectively), � is the discount factor, and
V(s′) is the reaching state value (coded as +1 or −1 for rewarded (‘re’)
and non-rewarded final state (‘nr’), respectively). The value of the
stimulus state is assigned as follows:

V(s) = max
a

Q (s, a) (3)

The action selection probabilities are calculated using the Soft-
max  function [23]:

Pi = exp(Q (s, ai)�(s))∑
j=L,R

exp(Q (s, aj)�(s))
(4)

where Q (s, ai) is the value of each state-action pair and � is the
inverse-temperature parameter in the Softmax function. The left
and right response units are denoted by L and R, respectively.

The computed probabilities in Eq. (4) are used for response
generation based on leaky competing accumulator [24] models of
decision making in two-alternative-forced-choice tasks. The acti-
vation function of the response units obeys the following rule:

�f t
i = (Et

i �t + 0.04 − Et
i f t

i − Iif
t
j )dt + N (0, .01) (5)

where f t
i

and f t
j
show the activity levels of a response unit and its

competing response unit at time t, respectively.Et
i

and Ii show the
excitatory and the inhibitory weights to response unit i, respec-
tively. �t is a function that equals zero when the activity of either
response units exceeds a decision threshold (response genera-
tion) and otherwise equals one. dt(= 0.01) is a time constant, and
N (0, .01)is  a Gaussian noise with zero mean and standard deviation
of .01.

2.2.2. Performance monitoring and control
The monitoring part in the model monitors the performance

of other blocks and detects the need for further adjustments.
Specifically, the monitoring mechanism detects the occurrence
of unexpected outcomes and conflicts. When there is a need
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