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Small-worldness  and  modularity  of  the  resting-state  functional  brain
network  decrease  with  aging
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h  i g  h  l  i  g  h  t  s

• Graph  theory  can  be used  to  estimate  brain  network  efficiency.
• We  investigated  the effects  of  aging  on  small-worldness  and  modularity  of  the functional  brain  network.
• Small-worldness  and modularity  were  negatively  correlated  with  age.
• Node  strengths  for  sensorimotor  regions  showed  positive  correlations  with  age.
• Efficiency  of the human  functional  brain  network  gradually  decreases  with  age.
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a  b  s  t  r  a  c  t

The  human  brain  is  a complex  network  that is  known  to  be  affected  by  normal  aging.  Graph-based
analysis has  been  used  to estimate  functional  brain  network  efficiency  and  effects  of  normal  aging  on
small-worldness  have  been  reported.  This  relationship  is further  investigated  here  along  with  network
modularity,  a statistic  reflecting  how  well  a  network  is organized  into  modules  of densely  interconnected
nodes.  Modularity  has  previously  been  observed  to vary  as a function  of working  memory  capacity,
therefore  we  hypothesized  that  both  small-worldness  and  modularity  would  show  age-related  declines.
We  found  that  both  small-worldness  and  modularity  were  negatively  correlated  with  increasing  age  but
that this  decline  was  relatively  slow.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Human cognitive decline reflects various brain changes in a
complex network [6]. Each brain region has its own  function and
different regions are continuously sharing information with each
other. Functional connectivity is defined as a temporal dependency
between spatially separate regions, and is calculated as the co-
activation level of spontaneous BOLD time series recorded during
rest. Functional connectivity changes as individuals age [4,12].

In graph theory, the functional brain network is defined as a
graph with nodes and edges, reflecting brain regions and connec-
tions between the regions. Graph-based analyses of the functional
brain network have shown that the brain forms an integrative
complex network [7,13]. Functional segregation is the occurrence
of specialized processing within densely interconnected groups
of regions, and is quantified using a clustering coefficient or
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modularity value. Higher values for these indices are interpreted
as the presence of clusters or modules within the functional brain
network. Functional integration is the ability to rapidly combine
specialized information from distributed brain regions and is quan-
tified as characteristic path length or global efficiency. Shorter paths
and higher global efficiency mean higher integration in the brain.
The brain network simultaneously reconciles opposing demands of
functional segregation and integration. A well-designed network
could therefore combine functionally specialized modules with
a robust number of intermodular connections. Such a network is
called a small-world network, defined as a network that is more
clustered than a random network yet has approximately the same
characteristic path length as a random network.

Few studies have investigated potential changes in resting-state
network properties with aging. Bullmore and his colleague exam-
ined the efficiency of functional networks in younger and older
adults, and found that older adults show decreases in global and
local efficiency [1]. This research team has also studied whether
age affects functional network modularity [10], reporting that the
modularity of the older brain network was  not significantly differ-
ent from that of the younger, implying that whole brain module
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organization is conserved over the adult age range. However, they
also reported decreased intermodular connections to frontal mod-
ular regions. The absence of a significant aging effect on whole brain
modularity might be due to the relatively small sample size (n = 17
for young and 13 for old) used in this study. In the present study
we used a larger sample size to explore the effects of aging on the
properties of the resting-state functional network. A recent study
showed that resting-state network modularity is associated with
working memory capacity [17]. We  hypothesized that both small-
worldness and functional network modularity would decrease with
age, consistent with a general reduction in cognitive functioning
typically observed in the elderly.

2. Materials and methods

Two hundred and eight adult and elderly individuals without
a history of neurological or psychiatric disorders participated in
the present study. We  discarded from our analyses the participants
whose images showed excessive head movement (over 2 mm or
2◦) during acquisition. We  also removed participants whose images
indicated bran atrophy, silent bran infarction and/or pathological
subcortical white matter lesions. After such removals our study
included 193 participants (115 men, 78 women). The mean age
was 60.1 ± 12.1 (sd) years old, and the age range was 34–87 years
old. The Shimane University Medical Ethics Committee approved
the study and all participants gave their written informed consent.

Imaging data were acquired using a Siemens AG 1.5 T scanner.
Twenty axial slices parallel to the plane connecting the anterior
and posterior commissures were measured using a T2*-weighted
gradient-echo spiral pulse sequence (TR = 2000 ms,  TE = 46 ms,
flip angle = 90◦, scan order = interleave, matrix size = 64 × 64,
FOV = 256 mm × 256 mm,  slice thickness = 5 mm,  gap = 1 mm).  All
participants underwent this five-minute rs-fMRI scan only after
being instructed to remain awake with their eyes closed. After the
functional scan, T1-weighted images (MPRAGE) of the entire brain
were measured (192 sagittal slices, TR = 2170 ms,  TE = 3.93 ms,
inversion time = 1100 ms,  flip angle = 15◦, matrix size = 256 × 256,
FOV = 256 mm × 256 mm,  slice thickness = 1 mm).

We used Statistical Parametric Mapping (SPM8,
http://www.fil.ion.ucl.ac.uk/spm/) for spatial preprocessing.
The first 10 functional images for each participant were discarded
for magnetic field stabilization. The remaining 140 functional
images were realigned to remove any artifacts from head move-
ment and to correct for differences in image acquisition time
between slices. Next, the functional images were normalized to
the standard space defined by a template T1-weighted image
(MNI) and then resliced with a voxel size of 3 mm  × 3 mm × 3 mm
to agree with the gray matter probability maps. Spatial smoothing
was applied with the FWHM equal to 8 mm.  After the spatial
preprocessing, we did temporal preprocessing using the functional
connectivity toolbox (conn, http://www.alfnie.com/software).
Temporal smoothing was performed using a band-pass filter
(0.01–0.08 Hz). Head movement time series, white matter signal,
and cerebral spinal fluid signal were regressed out from each
voxel, based on CompCor Strategy [2]. To define brain nodes,
an automated anatomical labeling atlas (AAL) was employed to
divide the whole brain into 90 volumes of interest. The mean time
course of the voxels within each atlas region was  extracted for
network construction. A Pearson correlation coefficient matrix
was calculated for all time course pairs. We  then applied a power
adjacency function called ‘soft thresholding’:

wij =
(

rij + 1
2

)ˇ

Fig. 1. The soft thresholding approach aims to retain all edges, replacing the thresh-
olding operation with a continuous mapping of correlation (r) into edge weights (w)
using the power adjacency function. Top: matrixes of correlation r [−1 1] and edge
weight w [0 1] for a sample participant (A and D). Middle: edge r/w distributions of
the original and soft-thresholded networks (B and E). Different colored lines indi-
cate different participants. Bottom: distributions of node strength in the original (r)
and soft-thresholded (w) networks (C and F).

where wij = f (rij) describes a continuous, non-linear mapping of
correlation coefficients. Correlation coefficients in the range [−1
1] were translated to edge weights [0 1] with a power law [14].
Based on evidence provided by Schwarz and McGonigle [14], we
set 12 as � because small-worldness of soft-thresholded networks
is demonstrated at parameter values of  ̌ ≥ 12. Edge histograms
(rij/wij) before and after soft-thresholding transformations are illus-
trated in Fig. 1B and E. In the soft-thresholded networks, the edge
weight distributions became skewed toward lower values of wij.
The resulting histograms of node strength distribution are shown
in Fig. 1C and F. The soft-thresholded distribution approached a
profile similar to the power law observed with binary networks.

We estimated small-worldness and modular orga-
nization using the brain connectivity toolbox (BCT,
https://sites.google.com/site/bctnet/). Small-worldness was
quantified using characteristic path length and the clustering coef-
ficient [20]. Characteristic path length is defined as the average of
the shortest path length between all pairs of nodes, and the path
length represents the number of steps along the route between
the pairs. A shorter characteristic path length indicates a higher
level of communication efficiency between global brain regions.
The clustering coefficient is defined as the fraction of the node’s
neighbors that are also neighbors of each other, and reflects the
prevalence of clustered connectivity around individual nodes.
We normalized the characteristic path length and the clustering
coefficient by dividing by the value for the same variable calculated
for a randomly rewired null model. The characteristic path length
and the clustering coefficient of the random network were the
average of the values calculated from 100 randomly rewired null
models. Small-worldness “sigma” was  computed as the ratio of
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