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a  b  s  t  r  a  c  t

Recent  researches  point  out the  importance  of  the  fast-slow  cognitive  process  and  learning  process  of  self-
body. Bayesian  perspectives  on the  cognitive  system  also  attract  research  attentions.  The  view of  fast-slow
dynamical  system  has  long  attracted  wide  range  of attentions  from  physics  to  the  neurobiology.  In many
research  fields,  there  is a vast  well-organized  and  coherent  behavior  in the  multi  degrees-of-freedom.
This behavior  matches  the mathematical  fact that  fast-slow  system  is  essentially  described  with  a  few
variables.  In  this  paper,  we  review  the  mathematical  basis  for understanding  the fast-slow  dynamical
systems.  Additionally,  we review  the basis  of Bayesian  statistics  and  provide  a fast-slow  perspective  on
the  Bayesian  inference.

©  2015  The  Authors.  Published  by Elsevier  Ireland  Ltd.  This  is an  open  access  article  under  the  CC  BY
license  (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The fast-slow dynamical system is a set of interacting objects
such that at least one object varies much slower than the other
objects. This viewpoint has attracted wide range of research atten-
tions including physics, chemistry, sociology and neurobiology
(Haken, 2004; Scheffer et al., 2012). One of the reasons for this is
the mathematical fact that such system is essentially described
only by the slow variables. Fast variables are enslaved to these
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slow variables. A number of experiences that the multi degrees-of-
freedom (DOF) systems often show the DOF reduction encouraged
the researchers to model them with a fast-slow system.

In the cognitive sciences, Bayesian perspectives on the cognitive
systems attract lots of research attentions (Griffiths et al., 2008).
Additionally, researchers point out the existence and importance
of the fast-slow cognitive process about the self-body (Hagura and
Haggard, 2015).

In this paper, we review the mathematical basis and related
results of the fast-slow dynamical systems. Moreover we review
the basis of Bayesian statistics and propose a fast-slow perspective
on the Bayesian statistics. These review and perspectives would
be helpful for advancing the Bayesian perspectives in cognitive
science.
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2. Dynamical systems

2.1. Fast-slow dynamical system

We  consider the following ordinary differential equation (ODE)

Definition 1 (Fast-Slow ODE).

dx

dt
= f (x, y, ε) (1)

dy

dt
= εg(x, y, ε), (2)

with x ∈ R
n, y ∈ R

m, ε ∈ R, f: R
n+m → R

n and g: R
n+m → R

m. A
parameter ε is subjected to 0 ≤ ε � 1.

The variable y is called slow variable due to dy/dt � 0. Contrastingly
the variable x is called fast variable (Jones, 1995).

We assume the functions f, g are the C∞-differentiable functions
and that f is hyperbolic at the equilibrium of Eq. (1). In other words,
all of the eigenvalues of the Jacobian ∂f/∂x(x*, y*, ε) at any points
(x*, y*) ∈ {(x, y)|f(x, y, ε) = 0} have non-zero real parts. This assump-
tion is important for applying the implicit function theorem on f(x,
y, ε) = 0. As an especially important case ε = 0, we put down the
function x = h0(y) as a solution of 0 = f(x, y, 0).

By changing the timescales t to � = εt, Eqs. (1) and (2) become

ε
dx

d�
= f (x, y, ε) (3)

dy

d�
= g(x, y, ε). (4)

The time scale � is a slower unit of measurement than t. It is for this
reason that system (1) and (2) is called the fast system and system
(3) and (4) is called the slow system.

2.2. Dimensionality reduction and Synergetics

Roughly speaking, in the limit of ε → 0, there exists a � > 0 such
that the trajectory of (3) and (4) starts from (x0, y0) ∈ R

n+m, gets
closer to the trajectory of Eqs. (5) and (6) during −� < � < �.

x = h0(y) (5)

dy

d�
= g(h0(y), y, 0) (6)

It means that the variable x is enslaved to satisfy x = h0(y). For
a following precise explanation about this reduction, we denote
a manifold M0 = {(x, y)|x = h0(y), y ∈ K}, where K is a compact
domain in R

m.
Before explaining the theorem about the above mentioned

dimensionality reduction, we introduce a term:

Definition 2 (Locally invariant manifold (Chow et al., 2000)). A sub-
manifold M ⊂ R

n+m with boundary ∂M is called locally invariant
under (1) and (2), if, for any point p ∈ M/∂M, there exists a � > 0
such that (x, y)t,p ∈ M for t ∈ (− �,  �),  where (x, y)t,p is the solution
of (1) and (2) with (x, y)0,p = p.

Following theorem holds under a few appropriate assumptions
(Jones, 1995)

Theorem 3 (Fenichel’s theorem). If ε > 0 is sufficiently small, there
exists the locally invariant manifold under Eqs. (1) and (2) that Mε =
{(x, y)|x = hε(y), y ∈ K}. Moreover hε is Cr for any r< + ∞ jointly in y
and ε. Mε is diffeomorphic to M0.

Manifold Mε is called slow manifold. Fenichel’s theorem is known as
the generalization of Tikhonov–Levinson theory (O’Malley, 2014).
Tikhonov–Levinson theory assumes the stability of Eq. (1). Fenichel

generalized this theory to be applicable for hyperbolic f at the equi-
librium. Further historical review and extensions are reviewed in
O’Malley (2014). Thus we  get the reduced system Eq. (6).

We rewrite Eq. (6) to Eq. (7) without loss of generality.

dy

d�
= g0(y, �). (7)

The vector field is parametrized by �. As noted before, the variable
x is enslaved to this dynamics of the slow variable y.

Hermann Haken has investigated the mechanisms of the spon-
taneous emergence of new quantities and structures in the large
degree of freedom system (Haken, 2004). He named this research
field Synergetics. The fast-slow system is enslaved to the reduced
system (7). Moreover once bifurcation occurs in this reduced sys-
tem, the whole system spontaneously changes. A bifurcation of
a dynamical system is a qualitative change on the system which
is caused by parameters such as � (Crawford, 1991). A review of
bifurcation theory is outside the scope of this paper. Readers are
recommended to refer Crawford (1991) and Kuznetsov (2004). For
this reason, the fast-slow phenomena have been one of the research
subjects in Synergetics.

3. Bayesian statistics

3.1. Basis of Bayesian inference

At first, we introduce notations in this section. We  represent a
set of observed n samples as Xn = (X1, X2, . . .,  Xn) which are inde-
pendently taken from the true distribution q(x), x ∈ R

n. In general,
true distribution q(x) is unknown. Bayesian inference is a kind of
the statistical inference which aims to construct a model of q(x). It
is based on the Bayes’ theorem:

ϕ(w|Xn) = ϕ0(w)
∏n

i=1p(Xi|w)∫
ϕ0(w)

∏n
i=1p(Xi|w)dw

(8)

which consists of a conditional probability distribution p(x|w),
given a parameter w ∈ R

d, prior distribution ϕ0(w) and samples Xn.
The Bayes’ theorem (8) is recursively derived from another form of
the Bayes’ theorem:

ϕ(w|Xn) = p(Xn|w)ϕ(w|Xn−1)∫
p(Xn|w)ϕ(w|Xn−1)dw

, (9)

where ϕ0(w) = ϕ(w|X0). Bayesian inference is the updating pro-
cess of prior distribution to the posterior distribution based on
the Bayes’ theorem. The denominator Z =

∫
ϕ0(w)

∏n
i=1p(Xi|w)dw

is called the marginal likelihood and the negative logarithm − ln Z
is called the Bayes free energy (Watanabe, 2001a).

We are interested in the asymptotic agreement between true
distribution q(x) and predictive distribution p(x|Xn) in the limit of
n→ ∞,  where predictive distribution is defined as

p(x|Xn) =
∫

p(x|w)ϕ(w|Xn)dw. (10)

Watanabe (Watanabe, 2001b) showed that the generalization error
G(n) = EXn [d(q( · ), p( · |Xn))] behaves G(n) → 0 with n→ ∞ when
d(q(·), p(· |Xn)) is Kull-back Leibler divergence (KL divergence):

d(q( · ), p( · |Xn)) =
∫

q(x) ln
q(x)

p(x|Xn)
dx. (11)

KL divergence is a type of divergence function.

Definition 4 (Divergence function (Gneiting and Raftery, 2007)).

d(P, Q ) = S(Q, Q ) − S(P, Q ) P, Q ∈ P (12)
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