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The relatively low invasiveness of electrocorticography (ECoG) has made it a promising candidate for the
development of practical, high-performance neural prosthetics. Recent ECoG-based studies have shown
success in decoding hand and finger movements and muscle activity in reaching and grasping tasks.
However, decoding of force profiles is still lacking. Here, we demonstrate that lateral grasp force profile
can be decoded using a sparse linear regression from 15 and 16 channel ECoG signals recorded from
sensorimotor cortex in two non-human primates. The best average correlation coefficients of prediction
after 10-fold cross validation were 0.8240.09 and 0.79+0.15 for our monkeys A and B, respectively.
These results show that grasp force profile was successfully decoded from ECoG signals in reaching and
grasping tasks and may potentially contribute to the development of more natural control methods for

grasping in neural prosthetics.
© 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

1. Introduction

Brain machine interfaces (BMIs) hold promise as a means for dis-
abled individuals to control external devices using neural activity.
In the past two decades, invasive methods have been wildly used
to control robot arms and other neural prosthetics in rats (Chapin
et al., 1999; Koralek et al., 2012), monkeys (Wessberg et al., 2000;
Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004;
Velliste et al., 2008; Ganguly et al., 2011; Ethier et al., 2012; Gilja
et al,, 2012; Hauschild et al., 2012; Hao et al., 2013), and humans
(Hochbergetal.,2006,2012; Collinger et al., 2013), using neural sig-
nals such as spiking activity and local field potential. Muscle activity
(Morrow and Miller, 2003; Koike et al., 2006), reach and grasp kine-
matics (Zhuang et al.,2010; Bansal etal.,2011,2012) and dexterous
finger motions (Aggarwal et al., 2008) during real movement have
also been decoded in monkeys. Despite these successes, however,
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the penetration of the brain with invasive methods has remained a
serious bottleneck for practical clinical solutions in humans.

Electrocorticography (ECoG) signal presents a potential alterna-
tive for supporting high accuracy BMIs because of its comparatively
lower invasiveness. ECoG has seen wide clinical use, with elec-
trodes commonly being implanted to localize seizure foci for the
treatment of epilepsy in humans. This has also allowed for the
investigation of ECoG-based BMI in humans, including studies on
cursor control (Leuthardt et al., 2004; Schalk et al., 2008; Wang
et al., 2013), classification of hand movement (Chin et al., 2007;
Yanagisawa etal.,2009,2011), and grasp types (Pistohl etal.,2012),
detection of grasp initiation (Pistohl et al., 2013), and decoding of
hand trajectories (Schalk et al., 2007; Chao et al., 2010; Shimoda
et al., 2012; Nakanishi et al., 2013; Chen et al., 2013) and finger
movement (Kubanek et al., 2009; Acharya et al., 2010). Prediction
of muscle activity (Shin et al., 2012) and movement-related intra-
cortical activity (Watanabe et al., 2012) from ECoG signals during
reaching and grasping movements in monkeys have also been suc-
cessful. Despite the importance of grasping force in everyday life,
the prediction of grasp force profile during reaching and grasping
movement has remained lacking yet.
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The aim of this study was to decode grasp force profile from
ECoG signals recorded from the primary sensorimotor areas. Fif-
teen and sixteen channel ECoG signals were recorded from the
primary sensorimotor cortex in Japanese monkeys while perform-
ing reaching and grasping tasks. A sparse linear regression method
was employed to decode grasp force profile. Our results demon-
strate accurate decoding of grasp force profile from ECoG signals
and the efficacy of high vy bands in decoding.

2. Materials and methods
2.1. Ethics statement

All experimental procedures were performed in accordance
with the Guidelines for Proper Conduct of Animal Experiments
by the Science Council of Japan and approved by the Commit-
tee for Animal Experiments at the National Institutes of Natural
Sciences (Approval No.: 11A157). Steps were taken to ensure the
animals’ welfare and ameliorate suffering in accordance with the
recommendations of the Weatherall report, “The use of non-human
primates in research.”

2.2. Monkey subjects and experimental procedure

Here, we describe our main experimental procedures. Details on
these procedures can be found in our previous works (Watanabe
et al., 2012; Shin et al., 2012; Chen et al., 2013). We trained two
Japanese monkeys (monkey A: male, 8.9 kg; monkey B: female,
4.7 kg) to reach for and grasp a small plastic knob at the end of joy-
stick with the right hand, repeatedly and continuously. Totals of 134
and 248 trials were performed by monkeys A and B, respectively.

2.3. ECoG and force data collection

A thin-film force sensor (FlexiForce; Tekscan, Inc., South Boston,
MA) was attached to the surface of a knob to measure grasp force. As
shown in Fig. 1, 15 (monkey A: 5 x 3 grid) and 16 (monkey B: 4 x 4
grid, with one electrode in the somatosensory cortex) channel ECoG
electrode arrays (Unique Medical Corporation, Tokyo, Japan) were
implanted in the left primary sensorimotor areas, for monkeys A
and B, respectively. Locations of these electrode arrays were iden-
tified from anatomical views during surgeries and postoperative
X-ray image (monkey B) or observation with craniotomy after per-
fusion (monkey A). The electrodes had a diameter of 1 mm and
an inter-electrode distance of 3 mm center-to-center. ECoG signals
and lateral grasp force were recorded simultaneously during the
grasping task at 4 kHz with an acquisition processor system (Plexon
MAP System; Plexon, Inc., Dallas, TX) and down-sampled to 500 Hz
for data processing.

2.4. Decoding algorithm and data analysis

We detected the start and end time points for grasping from the
position of the wrist marker, a on and off target sensor information
onjoystick (Shinetal.,2012; Chenetal., 2013). The start point (time
point 0 in Fig. 2) was defined as the time point when the monkeys
touched the knob, and the end point was defined as the time
point when the monkeys released the knob. Both points were con-
firmed using target sensor data. Average grasping durations with
standard deviations (STD) for monkeys A and B were 1.864+0.21s
and 0.5240.17 s, respectively (Fig. 2). Thus, the duration of each
trial was set to 2 s and 0.7 s in force profile prediction monkeys A
and B, respectively. Tenfold cross validation was employed to coun-
teract over-fitting, with each fold containing 11 and 24 test trials
for monkeys A and B, respectively.

In preprocessing, raw ECoG signals were common average refer-
enced and band-pass filtered, using ten different sensorimotor
frequency band-pass filters: d (1.5-4Hz), 6 (4-8 Hz), o (8-14Hz),
31 (14-20Hz), 2 (20-30Hz), y1 (30-50Hz), y2 (50-90Hz), vy3
(90-120Hz), v4 (120-150Hz), and y5 (150-200 Hz). Band-passed
ECoG signals were then smoothed with a Gaussian filter (width:
0.1s; o 0.04s). Finally, the smoothed ECoG signals at time ¢,
SECoG;;(t), were z-score normalized to produce the final ECoG
source signal z;;(t) such that

SECOGIJ(t) — MKij
Tjj

zi(t) = (1)

where i andj are the electrode channel and frequency band, respec-
tively, and w;; and oj; are the mean and standard deviation of
SECoG;;(t) over a 2 s interval before time ¢, respectively.

Force data were also low-passed filtered at a cutoff of 4Hz
(100th order window-based finite impulse response filter). Then,
the low-passed force data were normalized to the maximum value
of each trial to produce the force profile.

A sparse linear regression method was employed to train a
decoding model using ECoG feature signals. Sparse estimation
methods are expected to be useful for extracting significant infor-
mation from redundant and numerous dataset. We used the sparse
linear regression algorithm, which has a generalization capability
for unknown datasets due to its ability to remove irrelevant fea-
tures, avoid over-fitting of the datasets. The grasp force profile at
time t, Fy(t), was decoded using the ECoG feature signal z;(t) over
a 0.6 s interval before time t and can be described as
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where p is the predicted value of the grasp force profile, Atis 30 ms,
wjj, are the weights according to the ECoG feature signal z;(t) at
electrode channel i, frequency band j, and time t — At, and wy is the
bias.

Weights of the prediction model were analyzed to evaluate the
contribution of each electrode and frequency band. The contribu-
tion of each electrode Cone, each frequency band Cong, and the
contribution matrix of electrodes and frequency bands Con,g, were
calculated as

Cone(i) = M
ZiZ}Zk |wijk |

>k | @i
ZiZjZk ’wijk|

Conep(i, j) = M (5)

- ZiZjZk |wijk|

where wjj, are the weights according to the ECoG feature signal
z;j(t) at electrode channel i, frequency band j, and time t — At.

Analysis of variance (ANOVA) was performed using MATLAB
(MathWorks, Natick, MA) to detect significant effects of Con, and
Cong,. A two-way ANOVA with the Tukey-Kramer test was applied
to detect significant effects of Coneg,. In addition, force profile was
predicted using each of the 10 frequency bands of the ECoG feature
signals to investigate their individual contributions to prediction.
Correlation coefficient (CC) and normalized root mean square error
(nRMSE) between actual and predicted force profiles were used to
evaluate prediction performance.

(3)

Cong(j) = (4)
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