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a  b  s  t  r  a  c  t

The  relatively  low  invasiveness  of  electrocorticography  (ECoG)  has  made  it a promising  candidate  for  the
development  of  practical,  high-performance  neural  prosthetics.  Recent  ECoG-based  studies  have  shown
success  in  decoding  hand  and finger  movements  and  muscle  activity  in  reaching  and  grasping  tasks.
However,  decoding  of force  profiles  is  still  lacking.  Here,  we demonstrate  that  lateral  grasp  force  profile
can  be  decoded  using  a  sparse  linear  regression  from  15  and  16  channel  ECoG  signals  recorded  from
sensorimotor  cortex  in  two non-human  primates.  The  best  average  correlation  coefficients  of  prediction
after  10-fold  cross  validation  were  0.82  ± 0.09  and  0.79  ± 0.15  for  our monkeys  A  and  B,  respectively.
These  results  show  that grasp  force  profile  was  successfully  decoded  from  ECoG  signals  in  reaching and
grasping  tasks  and  may  potentially  contribute  to  the  development  of  more  natural  control  methods  for
grasping in  neural  prosthetics.

© 2014  Elsevier  Ireland  Ltd and  the Japan  Neuroscience  Society.  All  rights  reserved.

1. Introduction

Brain machine interfaces (BMIs) hold promise as a means for dis-
abled individuals to control external devices using neural activity.
In the past two decades, invasive methods have been wildly used
to control robot arms and other neural prosthetics in rats (Chapin
et al., 1999; Koralek et al., 2012), monkeys (Wessberg et al., 2000;
Taylor et al., 2002; Carmena et al., 2003; Musallam et al., 2004;
Velliste et al., 2008; Ganguly et al., 2011; Ethier et al., 2012; Gilja
et al., 2012; Hauschild et al., 2012; Hao et al., 2013), and humans
(Hochberg et al., 2006, 2012; Collinger et al., 2013), using neural sig-
nals such as spiking activity and local field potential. Muscle activity
(Morrow and Miller, 2003; Koike et al., 2006), reach and grasp kine-
matics (Zhuang et al., 2010; Bansal et al., 2011, 2012) and dexterous
finger motions (Aggarwal et al., 2008) during real movement have
also been decoded in monkeys. Despite these successes, however,
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the penetration of the brain with invasive methods has remained a
serious bottleneck for practical clinical solutions in humans.

Electrocorticography (ECoG) signal presents a potential alterna-
tive for supporting high accuracy BMIs because of its comparatively
lower invasiveness. ECoG has seen wide clinical use, with elec-
trodes commonly being implanted to localize seizure foci for the
treatment of epilepsy in humans. This has also allowed for the
investigation of ECoG-based BMI  in humans, including studies on
cursor control (Leuthardt et al., 2004; Schalk et al., 2008; Wang
et al., 2013), classification of hand movement (Chin et al., 2007;
Yanagisawa et al., 2009, 2011), and grasp types (Pistohl et al., 2012),
detection of grasp initiation (Pistohl et al., 2013), and decoding of
hand trajectories (Schalk et al., 2007; Chao et al., 2010; Shimoda
et al., 2012; Nakanishi et al., 2013; Chen et al., 2013) and finger
movement (Kubanek et al., 2009; Acharya et al., 2010). Prediction
of muscle activity (Shin et al., 2012) and movement-related intra-
cortical activity (Watanabe et al., 2012) from ECoG signals during
reaching and grasping movements in monkeys have also been suc-
cessful. Despite the importance of grasping force in everyday life,
the prediction of grasp force profile during reaching and grasping
movement has remained lacking yet.
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The aim of this study was to decode grasp force profile from
ECoG signals recorded from the primary sensorimotor areas. Fif-
teen and sixteen channel ECoG signals were recorded from the
primary sensorimotor cortex in Japanese monkeys while perform-
ing reaching and grasping tasks. A sparse linear regression method
was employed to decode grasp force profile. Our results demon-
strate accurate decoding of grasp force profile from ECoG signals
and the efficacy of high � bands in decoding.

2. Materials and methods

2.1. Ethics statement

All experimental procedures were performed in accordance
with the Guidelines for Proper Conduct of Animal Experiments
by the Science Council of Japan and approved by the Commit-
tee for Animal Experiments at the National Institutes of Natural
Sciences (Approval No.: 11A157). Steps were taken to ensure the
animals’ welfare and ameliorate suffering in accordance with the
recommendations of the Weatherall report, “The use of non-human
primates in research.”

2.2. Monkey subjects and experimental procedure

Here, we describe our main experimental procedures. Details on
these procedures can be found in our previous works (Watanabe
et al., 2012; Shin et al., 2012; Chen et al., 2013). We  trained two
Japanese monkeys (monkey A: male, 8.9 kg; monkey B: female,
4.7 kg) to reach for and grasp a small plastic knob at the end of joy-
stick with the right hand, repeatedly and continuously. Totals of 134
and 248 trials were performed by monkeys A and B, respectively.

2.3. ECoG and force data collection

A thin-film force sensor (FlexiForce; Tekscan, Inc., South Boston,
MA) was attached to the surface of a knob to measure grasp force. As
shown in Fig. 1, 15 (monkey A: 5 × 3 grid) and 16 (monkey B: 4 × 4
grid, with one electrode in the somatosensory cortex) channel ECoG
electrode arrays (Unique Medical Corporation, Tokyo, Japan) were
implanted in the left primary sensorimotor areas, for monkeys A
and B, respectively. Locations of these electrode arrays were iden-
tified from anatomical views during surgeries and postoperative
X-ray image (monkey B) or observation with craniotomy after per-
fusion (monkey A). The electrodes had a diameter of 1 mm and
an inter-electrode distance of 3 mm center-to-center. ECoG signals
and lateral grasp force were recorded simultaneously during the
grasping task at 4 kHz with an acquisition processor system (Plexon
MAP System; Plexon, Inc., Dallas, TX) and down-sampled to 500 Hz
for data processing.

2.4. Decoding algorithm and data analysis

We  detected the start and end time points for grasping from the
position of the wrist marker, a on and off target sensor information
on joystick (Shin et al., 2012; Chen et al., 2013). The start point (time
point 0 in Fig. 2) was defined as the time point when the monkeys
touched the knob, and the end point was defined as the time
point when the monkeys released the knob. Both points were con-
firmed using target sensor data. Average grasping durations with
standard deviations (STD) for monkeys A and B were 1.86 ± 0.21 s
and 0.52 ± 0.17 s, respectively (Fig. 2). Thus, the duration of each
trial was set to 2 s and 0.7 s in force profile prediction monkeys A
and B, respectively. Tenfold cross validation was employed to coun-
teract over-fitting, with each fold containing 11 and 24 test trials
for monkeys A and B, respectively.

In preprocessing, raw ECoG signals were common average refer-
enced and band-pass filtered, using ten different sensorimotor
frequency band-pass filters: � (1.5–4 Hz), � (4–8 Hz), � (8–14 Hz),
�1 (14–20 Hz), �2 (20–30 Hz), �1 (30–50 Hz), �2 (50–90 Hz), �3
(90–120 Hz), �4 (120–150 Hz), and �5 (150–200 Hz). Band-passed
ECoG signals were then smoothed with a Gaussian filter (width:
0.1 s; � 0.04 s). Finally, the smoothed ECoG signals at time t,
sECoGij(t), were z-score normalized to produce the final ECoG
source signal zij(t) such that

zij(t) = sECoGij(t) − �ij

�ij
(1)

where i and j are the electrode channel and frequency band, respec-
tively, and �ij and �ij are the mean and standard deviation of
sECoGij(t) over a 2 s interval before time t, respectively.

Force data were also low-passed filtered at a cutoff of 4 Hz
(100th order window-based finite impulse response filter). Then,
the low-passed force data were normalized to the maximum value
of each trial to produce the force profile.

A sparse linear regression method was  employed to train a
decoding model using ECoG feature signals. Sparse estimation
methods are expected to be useful for extracting significant infor-
mation from redundant and numerous dataset. We  used the sparse
linear regression algorithm, which has a generalization capability
for unknown datasets due to its ability to remove irrelevant fea-
tures, avoid over-fitting of the datasets. The grasp force profile at
time t, Fp(t), was  decoded using the ECoG feature signal zij(t) over
a 0.6 s interval before time t and can be described as

Fp(t) =
15 or 16∑

i=1

10∑

j=1

19∑

k=0

ωijkzij(t − k�t) + ω0 (2)

where p is the predicted value of the grasp force profile, �t  is 30 ms,
ωijk are the weights according to the ECoG feature signal zij(t) at
electrode channel i, frequency band j, and time t − �t, and ω0 is the
bias.

Weights of the prediction model were analyzed to evaluate the
contribution of each electrode and frequency band. The contribu-
tion of each electrode Cone, each frequency band Confb and the
contribution matrix of electrodes and frequency bands Conefb were
calculated as
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where ωijk are the weights according to the ECoG feature signal
zij(t) at electrode channel i, frequency band j, and time t − �t.

Analysis of variance (ANOVA) was performed using MATLAB
(MathWorks, Natick, MA)  to detect significant effects of Cone and
Confb. A two-way ANOVA with the Tukey–Kramer test was applied
to detect significant effects of Conefb. In addition, force profile was
predicted using each of the 10 frequency bands of the ECoG feature
signals to investigate their individual contributions to prediction.
Correlation coefficient (CC) and normalized root mean square error
(nRMSE) between actual and predicted force profiles were used to
evaluate prediction performance.
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