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a b s t r a c t

Many previous studies have proposed methods for quantifying neuronal interactions. However, these
methods evaluated the interactions between recorded signals in an isolated network. In this study, we
present a novel approach for estimating interactions between observed neuronal signals by theorizing
that those signals are observed from only a part of the network that also includes unobserved structures.
We propose a variant of the recurrent network model that consists of both observable and unobser-
vable units. The observable units represent recorded neuronal activity, and the unobservable units are
introduced to represent activity from unobserved structures in the network. The network structures are
characterized by connective weights, i.e., the interaction intensities between individual units, which are
estimated from recorded signals. We applied this model to multi-channel brain signals recorded from
monkeys, and obtained robust network structures with physiological relevance. Furthermore, the net-
work exhibited common features that portrayed cortical dynamics as inversely correlated interactions
between excitatory and inhibitory populations of neurons, which are consistent with the previous view
of cortical local circuits. Our results suggest that the novel concept of incorporating an unobserved struc-
ture into network estimations has theoretical advantages and could provide insights into brain dynamics
beyond what can be directly observed.

© 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

1. Introduction

Recent methodological developments in the simultaneous
recording of multi-dimensional brain signals have increased our
understanding of how these signals interact with each other,
and how information is processed in the brain. To analyze the
relationships between simultaneously recorded neurons, bivari-
ate statistical dependencies can be computed using measures such
as cross-correlations, coherence, and phase synchronization (e.g.,
Griffith and Horn, 1963; Bressler et al., 1993; and Cobb et al., 1995,
respectively). While these methods can be effective in identify-
ing potential functional connections between pairs of neurons, or
between brain regions, they are unable to capture any directional
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(or causal) interactions. To address this issue, researchers have
recently begun to develop alternative causal measures. One of the
most widely used methods is the Granger causality, which was
originally developed for use with social and economic systems
(Granger, 1969). On the basis of a time-lagged linear regression
analysis, Granger causality captures information about the future
state of 1 variable by taking into account the past states of another
variable. Transfer entropy is a related measure based on an infor-
mation theory that is also based on linear interactions (Schreiber,
2000). As another causal measure, transfer entropy detects direc-
tional interactions between 2 variables by considering the effects
of the state of 1 variable on the state transition probabilities of
another. However, these causal measures cannot detect whether
the causality is due to direct or indirect interactions, or to a common
external influence, such as a shared input (Kaminski et al., 2001).

More recently, these measures have been extended in a mul-
tivariate manner, and applied to the study of causal relationships
in neuronal networks (e.g., Hesse et al., 2003; Smith et al., 2006;
Quinn et al., 2011). These studies have attempted to determine
the directional influences between any given pair of signals from
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Fig. 1. Introduction of the proposed network. (A) An example of a recurrent network consisting of 3 units. These units interact with each other through their connective
weights Wij , and update their outputs ŝ(i)

t . (B) Focus on the time domain of the recurrent network. The network contains the input layer, consisting of the previous outputs
of each unit at time t − 1, and the output layer, consisting of the current outputs at time t. (C) The partially observable network. The inputs and outputs of the network are
provided only from observed signals. The middle layer consists of both observable and unobservable units.

multi-channel recordings, and have provided insights into the
causal relationships between those signals. It is important to
note that to date, such studies have not inferred hidden neural
structures that underlie those causal interactions (Friston, 2009),
although signals have only been observed from a part of the
system. In order to obtain a more complete picture of information
processing in the brain from only partially observed activity, we
need to account for the influence of neural structures that are not
directly observed. To this end, we aimed to reveal the influence of
unobserved neural structures, as well as the multivariate causal
interactions between recorded neuronal signals.

Hidden Markov models (HMMs) constitute one of the more
widely used models, and explicitly include such unobserved struc-
tures of data. Some studies have attempted to infer the hidden
structure of HMM (Viterbi, 1967; Baum et al., 1970). However,
because conventional HMMs use symbol-level abstraction, they are
not ideal for attempting to describe the neural basis of the observed
signals. In the present study, we use a rate-coding recurrent net-
work. In the network, the units generate real-valued time series of
their outputs through the interactions. Those outputs represent the
average firings of neuronal ensembles. Furthermore, the network is
capable of a variety of dynamic behaviors, including chaotic dynam-
ics (Funahashi and Nakamura, 1993; Beer, 1995). Recently, some
studies have successfully applied the neural network to macro-
scopic behavior of a neuronal population (Yamashita et al., 2008,
2011). The recurrent network of rate-coding units is thus consid-
ered able to emulate the characteristic features of macroscopic
mechanisms of biological neural systems.

For estimating network structures underlying partially
observed signals, we propose a variant of the recurrent net-
work model. The model includes a structure that preserves the
influence from unobserved structures underlying observed signals.
The model also acquires network parameters through iterative
training methods, using only the observed signals. Then, we applied
this model to multi-dimensional brain signals recorded from mon-
keys, and demonstrated that the model could reconstruct a robust
network structure with physiological plausibility. Further, we dis-
cuss functional interpretations of the network. This study extends
the work presented in Proceedings of the 2012 International Joint
Conference on Neural Networks (Komatsu et al., 2012).

2. Methods

2.1. Network model

In this section, we first propose a variant of a three-layer
recurrent network. The network explicitly implements the hidden
structures of observed signals. Then, we explain how the structure
of the network was inferred from the observed signals.

2.1.1. Partially observable network
First of all, we consider a recurrent network as a biological model

of macroscopic neural networks (Fig. 1A). The units update their
states through their interactions. Let c(i)

t , s(i)
t , and Wij denote the

state and output of unit i at time t, and the connective weight indi-
cating the strength of interaction from unit j to unit i, respectively.
Then, the state and output are updated according to the following
equations:

c(i)
t =

(
1 − 1

�(i)

)
c(i)

t−1 + 1
�(i)

N∑
j=1

Wijs
(j)
t−1, (1)

s(i)
t = tanh(c(i)

t + h(i)), i = 1, 2, . . ., N, (2)

where N, �(i), and h(i) are the number of units, the time constant
of unit i, and the bias of unit i, respectively. Eq. (1) means that the
internal state of unit i at time t is given as an interpolation between
the previous state at time t − 1 and the linear summation of the
outputs of all units at time t − 1. Eq. (2) implies an assumption that
each output has some limited values.

Those updates of the states of the units can be described as a
multi-input-multi-output network (Fig. 1B). The network has the
input layer as the previous outputs of each unit at time t − 1, and
the output layer as the current outputs at time t: that is

y(i)
t = s(i)

t , i = 1, 2, . . ., N, (3)

where y(i)
t are the outputs of units of the output layer.

Here, we suppose that not all such units within the network are
observable. Fig. 1A provides an illustrative example; suppose that
the outputs of units 1 and 2 are observable, and that the output of
unit 3 is not. In this case, the multi-input–multi-output network
shown in Fig. 1B is transformed to the network shown in Fig. 1C.
Fig. 1B and C represents the same network. The difference between
them is that the inputs and outputs of the network in Fig. 1C are
provided only by observed signals, while the middle layer consists
of both observable and unobservable units. The observed signals
at time t are denoted by z(k)

t , k = 1, 2,. . ., CH, where CH is the total
number of recorded units. The outputs of observable and unobser-
vable units at time t are also denoted by ŝ(i)

t , i = 1, 2,. . ., N, where N
is the total number of units. In the network, the state of the unob-
servable unit ŝ(3)

t−1 is provided through the connective weights W13,
W23, and W33 in the middle layer. In this study, we refer to this vari-
ant of recurrent networks as partially observable networks (PONs).
In PONs, there are connections from the input layer to the mid-
dle layer, from the unobservable units to both the observable and
unobservable units, and the observable units have connections only
to the output layer, fixed with a connective weight of 1 (Fig. 1C).
A similar architecture of three-layer recurrent networks was origi-
nally employed by Elman (1990) to represent time in connectionist
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