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Received 22 October 2015 The excessive extracellular accumulation of glutamate in the ischemic brain leads to an overactivation of
Received in revised form 22 March 2016 glutamate receptors with consequent excitotoxic neuronal death. Neuronal demise is largely due to a
Accepted 9 May 2016 sustained activation of NMDA receptors for glutamate, with a consequent increase in the intracellular Ca2
Available online 6 June 2016 * concentration and activation of calcium- dependent mechanisms. Calpains are a group of Ca?

*-dependent proteases that truncate specific proteins, and some of the cleavage products remain in the
'<€yw<{rd55 ) cell, although with a distinct function. Numerous studies have shown pre- and post-synaptic effects of
gg&l‘l‘;i‘smem‘a calpains on glutamatergic and GABAergic synapses, targeting membrane- associated proteins as well as

intracellular proteins. The resulting changes in the presynaptic proteome alter neurotransmitter release,
CABAergi while the cleavage of postsynaptic proteins affects directly or indirectly the activity of neurotransmitter
ergic synapses . R . .

Neuronal death receptors and downstream mechanisms. These alterations also disturb the balance between excitatory
Scaffold proteins and inhibitory neurotransmission in the brain, with an impact in neuronal demise. In this review we
discuss the evidence pointing to a role for calpains in the dysregulation of excitatory and inhibitory
synapses in brain ischemia, at the pre- and post-synaptic levels, as well as the functional consequences.
Although targeting calpain-dependent mechanisms may constitute a good therapeutic approach for
stroke, specific strategies should be developed to avoid non-specific effects given the important
regulatory role played by these proteases under normal physiological conditions.
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1. Introduction

Brain ischemia arises from a disturbance in the blood supply to
the brain, mainly due to cardiac arrest or to occlusion of a blood
vessel. A therosclerotic or thrombotic blockade of blood vessels
limits blood flow to a discrete area of the brain, while cardiac arrest
affects the whole brain. The resulting decrease in oxygen supply
and the consequent impairment in the metabolic activity affects
the balance between excitatory and inhibitory neurotransmission,
due to an upregulation of the glutamatergic activity and a
downregulation of the GABAergic neurotransmission (Choi,
1987; Schwartz-Bloom and Sah, 2001). The extracellular accumu-
lation of glutamate leads to an overstimulation of glutamate
receptors, with a consequent intracellular free calcium concentra-
tion ([Ca"];) overload, which plays a key role in neuronal demise
(excitotoxicity). The toxic effects of glutamate-evoked [Ca®'];
dysregulation are at least in part mediated by activation of
calpains, a group of calcium- dependent proteases present in
different neuronal compartments. This review will first describe
the calpain- calpastatin system and the mechanisms responsible
for the activation of calpains in ischemic and excitotoxic
conditions. We will also discuss the impact of calpain activation
on glutamatergic and GABAergic neurotransmission in the

ischemic brain, and the potential role of calpain inhibition as a
tool for neuroprotection.

In addition to the effects on the neuronal proteome mediated by
calpains, brain ischemia also alters neuronal proteostasis by
inhibition of the ubiquitin-proteasome system and release of
cathepsins from the lysosomal compartment. The role of these
proteolytic systems in neuronal demise in brain ischemia has been
reviewed elsewhere (Caldeira et al., 2014; Yamashima and Oikawa,
2009), and therefore will not be discussed here.

2. The calpain-calpastatin system
2.1. Calpains

Calpains are a family of calcium-dependent neutral cysteine
proteases ubiquitously expressed (Goll et al., 2003). When active,
these enzymes modify the structure and activity of their protein
targets by limited proteolysis. This mechanism is distinct from the
complete protein degradation mediated by proteasomes and
lysosomes, and regulates different cellular processes such as
tissue regeneration, cell development, proliferation, differentia-
tion, gene expression, signal transduction, synaptic plasticity and
apoptosis (Goll et al., 2003; Liu et al., 2008; Ono and Sorimachi,
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