ARTICLE IN PRESS

Progress in Neurobiology xxx (2014) xxx-xxx

Contents lists available at ScienceDirect

Progress in Neurobiology

journal homepage: www.elsevier.com/locate/pneurobio

Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus

Henry C. Tuckwell^{a,b,*}, Nicholas J. Penington^{c,d}

^a Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany

^b School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia

^c Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-

2098, USA

^d Program in Neural and Behavioral Science and Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Box 29, 450 Clarkson Avenue, Brooklyn, NY 11203-2098, USA

ARTICLE INFO

Article history: Received 11 October 2012 Received in revised form 14 April 2014 Accepted 21 April 2014 Available online xxx

Keywords: Dorsal raphe nucleus Serotonergic neurons Computational model Pacemaking

ABSTRACT

Serotonergic neurons of the dorsal raphe nucleus, with their extensive innervation of limbic and higher brain regions and interactions with the endocrine system have important modulatory or regulatory effects on many cognitive, emotional and physiological processes. They have been strongly implicated in responses to stress and in the occurrence of major depressive disorder and other psychiatric disorders. In order to quantify some of these effects, detailed mathematical models of the activity of such cells are required which describe their complex neurochemistry and neurophysiology. We consider here a singlecompartment model of these neurons which is capable of describing many of the known features of spike generation, particularly the slow rhythmic pacemaking activity often observed in these cells in a variety of species. Included in the model are 11 kinds of ion channels: a fast sodium current I_{Na} , a delayed rectifier potassium current I_{KDR} , a transient potassium current I_A , a slow non-inactivating potassium current I_{M} , a low-threshold calcium current I_{T} , two high threshold calcium currents I_{L} and I_{N} , small and large conductance potassium currents I_{SK} and I_{BK} , a hyperpolarization-activated cation current I_H and a leak current I_{Leak} . In Sections 3–8, each current type is considered in detail and parameters estimated from voltage clamp data where possible. Three kinds of model are considered for the BK current and two for the leak current. Intracellular calcium ion concentration Cai is an additional component and calcium dynamics along with buffering and pumping is discussed in Section 9. The remainder of the article contains descriptions of computed solutions which reveal both spontaneous and driven spiking with several parameter sets. Attention is focused on the properties usually associated with these neurons, particularly long duration of action potential, steep upslope on the leading edge of spikes, pacemakerlike spiking, long-lasting afterhyperpolarization and the ramp-like return to threshold after a spike. In some cases the membrane potential trajectories display doublets or have humps or notches as have been reported in some experimental studies. The computed time courses of I_A and I_T during the interspike interval support the generally held view of a competition between them in influencing the frequency of spiking. Spontaneous activity was facilitated by the presence of I_H which has been found in these neurons by some investigators. For reasonable sets of parameters spike frequencies between about 0.6 Hz and 1.2 Hz are obtained, but frequencies as high as 6 Hz could be obtained with special parameter choices. Topics investigated and compared with experiment include shoulders, notches, anodal break phenomena, the effects of noradrenergic input, frequency versus current curves, depolarization block, effects of cell size and the effects of I_M. The inhibitory effects of activating 5-HT1A autoreceptors are also

Corresponding author at: Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, 04103 Leipzig, Germany. Tel.: +49 3419999282.

E-mail addresses: Henry.Tuckwell@Adelaide.edu.au, tuckwell@mis.mpg.de (H.C. Tuckwell).

http://dx.doi.org/10.1016/j.pneurobio.2014.04.001 0301-0082/© 2014 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Tuckwell, H.C., Penington, N.J., Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog. Neurobiol. (2014), http://dx.doi.org/10.1016/j.pneurobio.2014.04.001

Abbreviations: 5-HT, 5-hydroxytryptamine (serotonin); 5-HTP, 5-hydroxytryptophan; ACh, acetylcholine; AHP, afterhyperpolarization; BK, big potassium channel; Ca_{*i*}, internal calcium ion concentration; CB, calbindin-D28k; CBP, calcium binding protein; CDI, calcium-dependent inactivation; CNS, central nervous syytem; CR, calretinin; CRF, corticotropin releasing factor; CSF, calcium source factor; D, duration (of spike); DA, dopamine; DRN, dorsal raphe nucleus; EC₅₀, concentration of drug causing half-maximal response; EPSP, excitatory post-synaptic potential; FURA-2AM, Fura-2-acetoxymethyl ester; GABA, gamma-aminobutyric acid; HPA, hypothalamus-pituitary-adrenal cortex; GIRK, G-protein-coupled inwardly rectifying K⁺; HVA, high-voltage activated; ISI, interval; LVA, low-voltage activated; mPFC, medial prefrontal cortex; PFC, prefrontal cortex; PV, parvalbumin; REM, rapid eye movement; SE, serotonin or serotonergic; SK, small potassium channel; SSRI, selective serotonin re-uptake inhibitor; TEA, tetra-ethyl ammonium chloride; TPH, tryptophan hydroxylase; TTX, tetrodotoxin; VGCC, voltage-gated calcium channel.

ARTICLE IN PRESS

H.C. Tuckwell, N.J. Penington/Progress in Neurobiology xxx (2014) xxx-xxx

investigated. There is a considerable discussion of in vitro versus in vivo firing behavior, with focus on the roles of noradrenergic input, corticotropin-releasing factor and orexinergic inputs. Location of cells within the nucleus is probably a major factor, along with the state of the animal.

© 2014 Elsevier Ltd. All rights reserved.

Contents

2

1.	Intro	duction: a summary of the properties of DRN SE neurons	000
	1.1.	Endocrine interactions and stress	000
	1.2	Firing activity	000
	13	Sinnhysical properties	000
	1.3.	Innits	000
	1.1.	Derenactive	000
2	Mem	hespective	000
2.	Volta	in all currents	000
э.	2 1	ge-dependent polassium currents	000
	3.1.	M-type potassium current, I _M .	000
	2.2	3.1.1. Parameter values for I_M	000
	3.2.	Iransient potassium current, <i>I</i> _A	000
		3.2.1. Parameter values for I_A	000
	3.3.	Delayed rectifier potassium current, I_{KDR}	000
		3.3.1. Parameter values for I_{KDR}	000
4.	Calciu	um currents	000
	4.1.	Calcium T-type current, I_T	000
		4.1.1. Mathematical expressions for I_T	000
		4.1.2. Voltage clamp data: $m_{T_{\infty}}$, $h_{T_{\infty}}$	000
		4.1.3. Time constants	000
		4.1.4 Voltage clamp results of Burlhis and Aghaianian (1987)	000
		415 Parameter values for <i>l</i> _r	000
	42	Calcium L-type current L	000
	ч.2.	A 2 1 Darameter values for L	000
	12	A.2.1. Talanteel values for I	000
	4.5.	Calcium N-type Current, IN.	000
-	сı.	4.5.1. Parameter values for I_N	000
5.	Calci	um-dependent potassium currents	000
	5.1.	Modeling the BK current	000
		5.1.1. Classical BK model	000
		5.1.2. Simplified V-dependent BK model	000
		5.1.3. <i>I_{ca}</i> -coupled BK model	000
	5.2.	Modeling the SK current.	000
		5.2.1. Estimation of g _{SK,max}	000
6.	Нуре	prolarization activated cation current, I _H	000
	6.1.	Parameter values for I _H	000
7.	Fast t	transient sodium current, I _{Na}	000
	7.1.	Parameter values for Inc.	000
8	Leak		000
0.	81	Standard simple leak model	000
	8.2	Leak model with K ⁺ and Na ⁺	000
٩	Calcii	Leak model with K and the	000
5.	0.1	Calcium buffering	000
	5.1.	Calcium builtering	000
		5.1.1. Duriet types in the DAN	000
	0.2	9.1.2. Modeling of the bullering contributions	000
	9.2.		000
	9.3.		000
10.	Simp	lihed model	000
	10.1.	Units	000
11.	Pacer	maker firing with excitatory input	000
	11.1.	Properties of solutions for set A parameters	000
		11.1.1. Description of underlying currents	000
		11.1.2. Term analysis	000
12.	Spont	taneous activity	000
13.	Furth	ner properties of the model	000
	13.1.	Effect of <i>I_M</i>	000
	13.2.	Excitation by noradrenergic input	000
	13.3	Cell size	000
	13.5.	Anodal break	000
	13. 4 . 12.5	Denolarization block	000
	12.J.	Some alternative snike natterns	000
	12.0.	Some are mary spike parterns.	000
	12.7.	Noticites	000
	13.8.	JIOUIDETS	000
	10.0	Solo foregroups upper a public entrant	000
	13.9.	spike nequency versus applied current	000

Please cite this article in press as: Tuckwell, H.C., Penington, N.J., Computational modeling of spike generation in serotonergic neurons of the dorsal raphe nucleus. Prog. Neurobiol. (2014), http://dx.doi.org/10.1016/j.pneurobio.2014.04.001

Download English Version:

https://daneshyari.com/en/article/6286517

Download Persian Version:

https://daneshyari.com/article/6286517

Daneshyari.com