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has provided valuable evidence that specific neurons contribute to particular behaviors. Here we review
what has been learned about cortical function from behavioral studies using microstimulation in
animals and humans. Experiments that examine how microstimulation affects the perception of stimuli
have shown that the effects of microstimulation are usually highly specific and can be related to the
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1. Introduction

Electrical microstimulation has long been an important tool for
exploring the organization and function of the nervous system. The
ability to perturb activity within a system can provide important
insights into the contributions of its components. In studies of the
brain’s circuitry, microstimulation has provided greater spatial and
temporal precision than other techniques that alter activity, such
as lesions or pharmacological agents.

Microstimulation has been a mainstay in studies of the
organization of motor systems. It has also been used in trained,
behaving subjects to explore how specific populations of neurons
contribute to sensory and cognitive processing. In addition to
assigning perceptual or motor contributions to specific neurons by
altering activity at specific brain sites, it has also been used to study
how readily activity inserted into different brain structures can be
behaviorally detected and discriminated. These studies provide
information about how brain structures integrate and process
neuronal activity.

Here we will focus on insights that have come from electrical
microstimulation of cerebral cortex in behaving subjects. Although
we focus on cerebral cortex, most of the approaches and the results
are likely applicable to other brain structures. We discuss studies
that provide information about the differences and commonalities
between different cortical regions. Microstimulation studies
support the idea that each region of cerebral cortex represents a
distinct type of sensory, motor or cognitive information that can be
used to guide behaviors. We will also consider microstimulation
experiments that investigate the plasticity of adult cerebral cortex
and the extent to which it can accommodate different spatiotem-
poral patterns of neuronal activity.

By limiting ourselves to specific types of microstimulation
experiments in cerebral cortex, our discussion will be far from an
exhaustive treatment of stimulation experiments. We focus on
experiments that use electrical microstimulation rather than
transcranial magnetic stimulation or optogenetic methods (see
Fenno et al, 2011; Yizhar et al., 2011; Pell et al, 2011).
Additionally, we primarily consider experiments that explore
the relationship between cortical activity and behavior, rather than
those that use microstimulation to establish functional connectiv-
ity between brain regions (see Clark et al., 2011). The general topic
of electrical microstimulation has been considered in other recent
reviews of technical considerations (Merrill et al., 2005; Tehovnik
et al., 2006) and scientific results (Cohen and Newsome, 2004;
Tehovnik and Slocum, 2006; Clark et al., 2011).

2. The effects of microstimulation on neurons

To interpret results from microstimulation experiments, we
must understand the spatial and temporal distributions of the

neuronal activity microstimulation creates. We therefore begin
with a discussion of how microstimulation alters neuronal activity.

The number of neurons activated by microstimulation and their
distribution in cortex depend on many stimulus parameters.
Electrical stimulation parameters often differ between experi-
ments, complicating comparisons between studies. To minimize
such complications, most of the experiments discussed below
involve similar stimulus parameters. Almost all use trains of
constant current pulses delivered through extracellular micro-
electrodes at rates from tens to hundreds of Hertz for periods from
tens to hundreds of milliseconds. The pulses are typically brief
(100-200 ws) and biphasic to avoid irreversible reactions at the
metal surface (Merrill et al., 2005), with the cathodal current first.
The currents delivered are generally between 1 and 100 pA.
Deviations from these ranges will be highlighted when relevant.

2.1. Direct and indirect activation

When considering how microstimulation affects behavior, it is
useful to distinguish between the direct and indirect effects of
microstimulation on neurons. The direct effect on neurons is
caused by current flowing from the microelectrode tip and
changing the membrane potential of neurons. The change in
membrane potential depends strongly on the distance between the
electrode and a neuronal element, as well as the time derivative of
stimulation intensity (Rattay, 1999). This direct effect of stimula-
tion can be thought of as an intracellular current injection
associated with each stimulus pulse, which can depolarize cells
enough to make them spike.

Microstimulation can directly affect synaptic release by direct
depolarization of synaptic terminals, by passive intracellular
spread of current to nearby presynaptic sites, or by action
potentials produced near the microelectrode that propagate to
more distant synaptic sites. Regardless of how the stimulus is
communicated to the synapse, the resulting synaptic activity in
directly excited neurons can indirectly affect the activity of many
postsynaptic neurons and cause them to spike.

The indirect neuronal spiking resulting from electrical micro-
stimulation can vastly exceed the direct neuronal activation. In
principle, a single action potential produced directly by micro-
stimulation might be repeatedly amplified in subsequent struc-
tures to produce millions of spikes (London et al., 2010). For
example, when a subject gives a spoken or written report of a
percept produced by microstimulation, all the neuronal activity
associated with producing that report can be considered to be
indirectly driven by the microstimulation. However, little would
be gained by trying to map all the indirect activity back to the site
of microstimulation.

Because the behavioral consequences of microstimulation
almost always depend on indirect activation that extends
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