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A B S T R A C T

Working memory is a crucial component of most cognitive tasks. Its neuronal mechanisms are still

unclear despite intensive experimental and theoretical explorations. Most theoretical models of working

memory assume both time-invariant neural representations and precise connectivity schemes based on

the tuning properties of network neurons. A different, more recent class of models assumes randomly

connected neurons that have no tuning to any particular task, and bases task performance purely on

adjustment of network readout. Intermediate between these schemes are networks that start out

random but are trained by a learning scheme. Experimental studies of a delayed vibrotactile

discrimination task indicate that some of the neurons in prefrontal cortex are persistently tuned to the

frequency of a remembered stimulus, but the majority exhibit more complex relationships to the

stimulus that vary considerably across time. We compare three models, ranging from a highly organized

line attractor model to a randomly connected network with chaotic activity, with data recorded during

this task. The random network does a surprisingly good job of both performing the task and matching

certain aspects of the data. The intermediate model, in which an initially random network is partially

trained to perform the working memory task by tuning its recurrent and readout connections, provides a

better description, although none of the models matches all features of the data. Our results suggest that

prefrontal networks may begin in a random state relative to the task and initially rely on modified

readout for task performance. With further training, however, more tuned neurons with less time-

varying responses should emerge as the networks become more structured.

� 2013 Elsevier Ltd. All rights reserved.

Abbreviations: PFC, prefrontal cortex; LA, line attractor model; RN, random network model; TRAIN, trained network model.
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1. Introduction

Working memory is used to hold and manipulate items mentally
for short periods of time, which is crucial for many higher cognitive
functions such as planning, reasoning, decision-making, and
language comprehension (Baddeley and Hitch, 1974; Baddeley,
1986; Fuster, 2008). Lesion and imaging studies have identified the
prefrontal cortex (PFC) as an essential area for working memory
performance. To explore the neural underpinnings of this facility,
experimental paradigms have been developed to record neural
activity while monkeys performed working-memory tasks, among
them delayed discrimination. In these experiments, monkeys have
to retain the memory of a briefly presented first stimulus (visual
image, location of the target, etc.) during a delay period of several
seconds in order to perform a comparison with a subsequently
presented stimulus. A key observation was the discovery of neurons
in several cortical areas, including PFC, that exhibit stimulus specific
persistent firing activity during the delay when no stimulus is
present (Fuster and Alexander, 1971; Miyashita and Chang, 1988;
Funahashi et al., 1989, 1990; Romo et al., 1999, 2002). It is commonly
believed that this persistent selective activity maintains the memory
of the stimulus.

Because no stimuli are presented during the delay, persistent
activity must be internally generated. A common theoretical
framework for this is the attractor neural network, which exhibits
many intrinsically stable activity states sustained by mutual
excitation between neurons coding for a particular stimulus or its
behaviorally relevant attribute (Hebb, 1949; Hopfield, 1982; Amit
and Brunel, 1997; Seung, 1998; Wang, 2001, 2009). When a
stimulus is briefly presented, the corresponding attractor is evoked
and remains active until the behavioral task is performed and the
network returns to its baseline state. In this way, the neuronal
activity encodes a memory trace during the delay.

If the features kept in working memory are of a discrete nature,
such as one of a collection of visual objects, the paradigmatic
network is of the Hopfield type (Hopfield, 1982) with a discrete set
of attractors. If the features are continuous, such as the spatial
location of a stimulus, the network dynamics should possess a
continuous set of attractors (Ben-Yishai et al., 1995; Seung, 1998).
In both situations, connections in the network have to be chosen as
a function of the selectivity properties of pre- and postsynaptic
neurons (e.g. increased mutual excitation between neurons with
similar tuning properties). Because the attractor states of the
network are stationary, the corresponding neural selectivity to
stimulus features is also stationary over the delay period.

Maintaining the information about stimulus attributes with
stationary persistent activity appears to be a natural and robust
mechanism of working memory (see e.g. Wang, 2008). However, a
closer look at experimental recordings reveals much greater
variability in neuronal response properties than can be accounted
for by standard attractor neural networks. In particular, a majority
of the cells exhibit firing frequency and selectivity profiles that
vary markedly over the course of the delay period (see e.g. Brody
et al., 2003; Shafi et al., 2007). These observations indicate that
elucidating the neuronal mechanisms of working memory is still
an open issue requiring further experimental and theoretical
research.

In this contribution, we consider a tactile version of the working
memory task (Romo et al., 1999), in which two vibrating stimuli
separated by a delay of 3 s are presented to a monkey who then has
to report whether the frequency of the first stimulus is larger or
smaller than that of the second (Fig. 1A and B). The delayed tactile
discrimination task requires three computational elements:
encoding of a stimulus parameter (the first frequency), mainte-
nance of its value in working memory, and comparison with the
second stimulus. Single neurons that correlated well with these

features were recorded in the PFC (Romo et al., 1999). Fig. 1C shows
a neuron with a firing rate during the first stimulus that increases
as a monotonic function of the stimulus frequency, a tendency that
is then maintained throughout the delay period. The neuron
depicted in Fig. 1D exhibits a negative monotonic dependence on
stimulus frequency, suggesting that a subtractive comparison
might be implemented by combining responses of these two types
of neurons.

These striking properties prompted the formulation of network
models that elegantly implement the three required computation-
al elements (Miller et al., 2003; Machens et al., 2005; Miller and
Wang, 2006). Many neurons in the PFC have less regular responses
than those described above (e.g. Fig. 1E and F) and, across the
population, response profiles are extremely heterogeneous (Brody
et al., 2003; Singh and Eliasmith, 2006; Joshi, 2007). A recent
analysis trying to ascertain the degree to which two models of this
type fit the recorded data concluded that ‘‘Neither model predicted
. . . a large fraction of the recorded neurons . . . suggesting that the
neural representation of the task is significantly more heteroge-
neous than either model postulates’’ (Jun et al., 2010). While it
seems natural to suppose that a neural circuit holding a fixed value
of a stimulus parameter in short-term memory would do so by
representing it in a time-invariant manner, the data do not support
this view. The ‘‘large fraction of recorded neurons’’ that failed to
match these models did so because they had highly time-
dependent activity. Indeed, the dominant quantity being encoded
by the recorded PFC neurons is not the stimulus parameter
required for the task, but instead time (Machens et al., 2010).

To study the role of time-dependent neural activity in the
storage of static stimulus parameters, we compare three models to
the recorded data in the delayed tactile discrimination task. One of
these is the line attractor, or LA, model of Machens and Brody
(Machens et al., 2005). The second is a randomly connected
network model, called RN, exhibiting chaotic activity with weight
modification restricted solely to readout weights. The third is a
recurrent network trained to perform the task by unrestricted
modification of its connection weights, called TRAIN. Individual
units in these models span the range seen in the data, from
structured (Fig. 1C and D) to more complex (Fig. 1E) and highly
irregular (Fig. 1F).

In addition to differing in the time-dependence of their
stimulus representations, the LA, TRAIN and RN models also vary
over a range of what might be called model orderliness, or model
structure. The LA model was designed to perform the task by
assuring that it contained a line of fixed points or line attractor that
could statically represent different stimulus values. The TRAIN
model was developed from an initially random network by
applying the recently developed ‘‘Hessian-Free’’ learning algo-
rithm (Martens and Sutskever, 2011). This constructs a network
that is less structured than the LA model, although it performs the
task in a somewhat similar manner. The RN model is also based on
a randomly connected network, but in this case the only modified
element is the readout of network activity; the internal connec-
tivity, which defines the network dynamics, remains random and
unrelated to the task. This is a novel application of an echo-state
type of network (Jaeger, 2001; Maass et al., 2002) that operates in
the chaotic rather than in the transient decaying regime typically
used for such networks (Sussillo and Abbott, 2009). The result is a
highly unstructured network with chaotic activity. Thus, the RN
model is far removed from the LA model, both because its structure
is essentially random rather than designed, and because it exhibits
chaotic rather than fixed-point dynamics. The TRAIN model is
intermediate between these extremes.

The ultimate goal is, of course, to figure out where PFC circuits
performing the delayed tactile discrimination task lie on the
spectrum from structured to unstructured and dynamically static
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