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comparison of the approaches and results of this research is lacking. The present review evaluates the
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1. Introduction

The central goal of neuroethologists is to understand the neural
underpinnings of animal behavior. This broad research endeavor
requires comparative research on a comprehensive set of animals
and their behaviors (Pearson, 2004; Marder and Calabrese, 1996).
Since most individual researchers focus on the behaviors of one
species, the effort is necessarily a communal one. Reviews that
directly compare results from studies on similar behaviors in
different species are essential for drawing broad conclusions from
these undertakings. Rhythmic behaviors are studied in a wide
variety of species (Delcomyn, 1980; Marder and Calabrese, 1996);
such behaviors occur in nearly all animals and the repetition
inherent to the behavior permits detailed study of the mechanisms
which underlie it. Swimming is one such rhythmic behavior.
Similarities in swimming locomotion are seen across many species
including the leech, crayfish, lamprey and tadpole (Skinner and
Mulloney, 1998). Our review closely compares the neuronal
mechanisms underlying the swimming undulations in two
distantly related animals, leeches and lampreys, for the purpose
of illustrating general principles important to the generation of
locomotion (Fig. 1).

The neural circuits underlying swimming in the leech and
lamprey are among the best understood systems that generate
complex behaviors and they produce remarkably similar rhythmic
swimming movements (Fig. 2). Leeches and lampreys had their last
common ancestor over 560 million years ago (Kumar and Hedges,
1998). Their disparate evolutionary lineages since that common
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Fig. 1. Block diagram of leech and lamprey systems that control swimming. Arrows
indicate the bidirectionality of all interactions but swim initiation.

ancestor gave rise to unrelated CNS morphologies, yet the nervous
systems of the two animals share many features. For these reasons,
a comparison of swimming behaviors between the leech and
lamprey is particularly apt.

Research on the nervous systems of the leech and lamprey has
an extensive and rich history. Research on the neuronal substrates
of leech behavior began in the 19th century with anatomic and
embryologic observations, continued with behavioral and physio-
logical studies in the first half of the 20th century, and now
continues with numerous studies that also include development,
pharmacology, evolution and ecology (Muller et al., 1981; Kristan
et al., 2005; Siddall et al., 2007). Studies of the lamprey nervous
system date back to at least 1840 and continue unabated
(Rovainen, 1979; McClellan, 1987; Buchanan, 2001; Grillner,
2006; Dubuc et al., 2008). The lamprey holds a special position
as “primitive” vertebrate; it shares many features with higher
species, including humans, but is more tractable than other
vertebrate systems. Neuroethological research in both animals is
facilitated by their relatively simple nervous systems, comprised of
relatively few, but often large neurons. The leech CNS comprises
about 10? neurons, most of which are sufficiently large and distinct
for identification as individual cells and delineation of circuit
interactions. By comparison, the lamprey CNS is considerably more
complex, comprising approximately 10° cells in the spinal cord
alone; it is nevertheless amenable to cell-class identification and
circuit mapping.

This review summarizes the parallel experimental approaches
applied to swimming locomotion in leeches and lampreys and the
findings from those studies. It is our hope that evaluation of these
independent research programs will lead to a greater understand-
ing of each species, as well as inform locomotion research in other
animals. In particular, differences in results should highlight
species-specific mechanisms and expand our understanding of
which neural elements are essential and which are incidental for
generating rhythmic movements.

We first address the establishment and justification of using
isolated spinal cord and ventral nerve cord preparations, which are
fundamental to the study of swimming. Comparisons of the
mechanisms behind initiation, maintenance and termination of
swimming follow. Finally, origins of rhythm generation, interseg-
mental coupling and sensory feedback are examined. This review
focuses on the neurobiology of swimming behavior; although
occasionally mentioned, details of studies on development,
regeneration, swim mechanics, and modeling are not presented.
Finally, only a fraction of the large amount of research on the
neuromodulation of swimming is discussed in this review.
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