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ARTICLE INFO ABSTRACT

Article history: The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly
Received 12 April 2011 evolved behavior that requires continual coordination of perceptions, learning and memory processes,
Received in revised form 6 August 2011 and the planning of behaviors. Here, a neurobiological account for such coordination is provided by
:\C/Zielzgig jr?liﬁ:%lisgezr?t]e;ber 2011 integrating current literatures on spatial context analysis and decision-making. This integration includes

discussions of our current understanding of the role of the hippocampal system in experience-dependent
navigation, how hippocampal information comes to impact midbrain and striatal decision making

g?g’;’fr:id;; systems, and finally the role of the striatum in the implementation of behaviors based on recent
Reinforcement learning decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key
Hippocampus findings described, but also fundamental organizing principles within and across neural systems, as well
Striatum as between neural systems functions and behavior, are emphasized. It is suggested that studying
Navigation decision making during goal-directed navigation is a powerful model for studying interactive brain
Decision making systems and their mediation of complex behaviors.
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1. Introduction

Nearly all cognitive processes utilize or include some aspect of
spatial information processing. An animal’s ability to find its way
around its world is critical for survival; it is crucial for obtaining
food, avoiding prey and finding mates. Research into spatial
information processing over many decades not only continues to
define the mechanisms that contribute to spatial information
processing, but these efforts have also provided significant insight
into the fundamental mechanisms that underlie learning and
memory more generally.

Within the laboratory, goal-directed spatial navigation, in
particular, is an immensely useful behavior to study because in
many ways it reflects ethologically relevant learning challenges,
and provides opportunities to examine dynamic features of neural
function that are otherwise not afforded by more simple
behavioral paradigms and tasks. Goal-directed navigation is a
complex behavior, requiring the subject to perceive its environ-
ment, learn about the significance of the environment, and then
select where to go next based upon what has been learned. Thus,
navigation-based tasks can be used to investigate behavioral and
neural aspects of external and internal sensory perception,
learning and decision making, memory consolidation and updat-
ing, and planned movement. Goal-directed navigation, then, is a
powerful model by which to study dynamic neural systems
interactions during a fundamental and complex natural behavior.

As a whole, efforts to understand the neurobiology of
navigational behavior have focused mainly on the nature and
mechanisms of spatial representation in limbic brain structures
that are known to be important for spatial learning. As a result,
there have been important revelations regarding the physiological
mechanisms that control limbic spatial representations. Relating
such representations, however, to limbic-mediated learning or
memory has been indirect and correlational at best (as discussed in
Mizumori et al., 2007a). Here, we suggest that careful application
of reinforcement learning theory to an understanding of how
decisions are made during goal-directed navigation can identify a
fundamental and essential process that likely underlies naviga-
tion-related perception, learning, memory or response selection.
That is, in order to understand how spatial representations are
related to learning, it is necessary to understand how decisions are
made during navigation from both neural and behavioral
perspectives. Without the ability to make adaptive decisions,

animals will not acquire the efficient learning strategies necessary
for adaptive behaviors. It should be noted that the suggestion to
link reinforcement learning ideas with navigation dates back
decades, although the terminology may be different (e.g., cost-
benefit analysis of foraging behavior vs. value-based decision
making). By investigating this link in freely navigating animals, we
may be able to uncover the mechanisms that underlie naturalistic
motivated behaviors.

2. Navigation and foraging behavior

The natural foraging environments on which laboratory
navigational tasks are based are tremendously complex. The
forager’s challenge is to acquire sufficient food stores to prevent
starvation, produce viable offspring, and avoid predators. A natural
tendency for many animals, including rodents, is to hoard small
amounts of food in a scattered distribution within their home
range or nest (Stephens, 1986). The caching of food requires careful
route planning to and from the source of food, the cache, and the
home nest. Moreover, because animals acquire food during times
when it is abundant, and recover it when food sources are scarce,
the animal must retain knowledge of where the food has been
cached. This behavior, a naturally occurring spatially directed
behavior, is evident in many species, including rodents, birds,
spiders, honeybees, and humans (e.g., Anderson, 1984; Davies,
1977; Diaz-Fleischer, 2005; Goss-Custard, 1977; Hawkes et al.,
1982; Waddington and Holden, 1979).

The development of mathematical models that formally
defined naturally occurring foraging behaviors led to optimal
foraging theory which describes the foraging behavior of an animal
in relation to the metabolic payoff it receives when using different
foraging options. Most animals are adapted structurally and
physiologically to feed on a limited range of food and to gather this
food in specific ways (e.g., caching of food during times of
abundance). Some food may contain more energy but be harder to
capture or be further away, while food that is close at hand may not
be considered as nutritionally profitable. According to optimal
foraging theory, an ‘optimal forager’ will make decisions that
maximize energy gain and minimize energy expenditure (Krebs
and McCleery, 1984; Stephens, 1986). Two foraging models are of
note: the ‘prey model’ proposed by MacArthur and Pianka (1966),
and the ‘patch model’ proposed by Charnov (1976). The prey model
seeks to define the criteria that determine whether prey items will
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