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a b s t r a c t

Auditory stream segregation describes the way that sounds are perceptually segregated into groups or
streams on the basis of perceptual attributes such as pitch or spectral content. For sequences of pure
tones, segregation depends on the tones' proximity in frequency and time. In the auditory cortex (and
elsewhere) responses to sequences of tones are dependent on stimulus conditions in a similar way to the
perception of these stimuli. However, although highly dependent on stimulus conditions, perception is
also clearly influenced by factors unrelated to the stimulus, such as attention. Exactly how ‘bottom-up’
sensory processes and non-sensory ‘top-down’ influences interact is still not clear.

Here, we recorded responses to alternating tones (ABAB …) of varying frequency difference (FD) and
rate of presentation (PR) in the auditory cortex of anesthetized guinea-pigs. These data complement
previous studies, in that top-down processing resulting from conscious perception should be absent or at
least considerably attenuated.

Under anesthesia, the responses of cortical neurons to the tone sequences adapted rapidly, in a manner
sensitive to both the FD and PR of the sequences. While the responses to tones at frequencies more
distant from neuron best frequencies (BFs) decreased as the FD increased, the responses to tones near to
BF increased, consistent with a release from adaptation, or forward suppression. Increases in PR resulted
in reductions in responses to all tones, but the reduction was greater for tones further from BF. Although
asymptotically adapted responses to tones showed behavior that was qualitatively consistent with
perceptual stream segregation, responses reached asymptote within 2 s, and responses to all tones were
very weak at high PRs (>12 tones per second).

A signal-detection model, driven by the cortical population response, made decisions that were
dependent on both FD and PR in ways consistent with perceptual stream segregation. This included
showing a range of conditions over which decisions could be made either in favor of perceptual inte-
gration or segregation, depending on the model ‘decision criterion’. However, the rate of ‘build-up’ was
more rapid than seen perceptually, and at high PR responses to tones were sometimes so weak as to be
undetectable by the model.

Under anesthesia, adaptation occurs rapidly, and at high PRs tones are generally poorly represented,
which compromises the interpretation of the experiment. However, within these limitations, these re-
sults complement experiments in awake animals and humans. They generally support the hypothesis
that ‘bottom-up’ sensory processing plays a major role in perceptual organization, and that processes
underlying stream segregation are active in the absence of attention.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the most impressive outcomes of processing in the
auditory system is the separation of elements in the complex
acoustic waveforms at each ear and their recombination (grouping)
into relevant perceptual objects (see Bregman, 1990 for a compre-
hensive account). This ‘auditory scene analysis’ can be split into a
‘primitive’, hard-wired stage and a ‘schema-based’ stage which
involves modulation by experience, prior stimuli and attention (for
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reviews see Carlyon, 2004; Snyder and Alain, 2007; Winkler et al.,
2009; Shamma and Micheyl, 2010). However, the interplay be-
tween primitive (bottom-up) and schema-based (top-down) pro-
cessing is still a matter of debate (Macken et al., 2003; Thompson
et al., 2011; Snyder et al., 2012; Spielmann et al., 2014).

Many studies of auditory scene analysis focus on stream
segregation: the way that a temporal sequence of sounds is
grouped or split perceptually. This has been most thoroughly
investigated for pure tones, where the resulting perceptual orga-
nization depends on the proximity of the tones in frequency and
time (van Noorden, 1977). These perceptual effects are reflected
both in responses to tone sequences in central auditory neurons in
animals (Fishman et al., 2001; Kanwal et al., 2003; Bee and Klump,
2004, 2005; Micheyl et al., 2005; Pressnitzer et al., 2008; Elhilali
et al., 2009; Bee et al., 2010; Christison-Lagay et al., 2015) and
non-invasive measures in humans (such as far-field electrophysi-
ological responses to individual tones: Snyder et al., 2006).

Neurophysiological studies have revealed that tones in percep-
tually separate streams are, qualitatively at least, represented by
different populations of neurons. Recordings from auditory cortex
of monkeys (Fishman et al., 2004), bats (Kanwal et al., 2003), birds
(the avian analogue Field L: Bee and Klump, 2004; Itatani and
Klump, 2014), ferrets (Elhilali et al., 2009), and from the auditory
brainstem of guinea pigs (Pressnitzer et al., 2008) all show that
tones with small frequency differences (FDs) stimulate overlapping
populations of neurons whilst tones with large FDs tend to stim-
ulate different populations. This is at least in part due to frequency
selectivity established in the cochlea (Rose and Moore, 2000).
However, the degree of overlap between stimulated populations
also decreases with increasing presentation rate (PR), similar to the
perceptual dependence (e.g. Fishman et al., 2004).

The second important perceptual effect is the ‘build-up’ of
stream segregation. A tone sequence is always perceived as a single
stream initially; the perception of segregated streams only builds
up over several seconds, with the rate of build-up also dependent
on the FD and PR (Bregman, 1978; Anstis and Saida, 1985). Neural
responses decrease over time and this ‘adaptation’ has been posited
as a neurophysiological correlate of build-up (Micheyl et al., 2005).
In this paper, we use adaptation to refer to the general decrease in
neural response with repeated tone presentation, and we use
‘suppression’ to refer to the decrease in the response to a tone that
is preceded by another (relative to when that tone is presented
alone). In neither case do we imply an underlying mechanism. The
neurophysiological build-up of streaming has been characterized in
single units in the auditory cortex of awakemacaque (Micheyl et al.,
2005), in multi-units in field L of the awake starling (Bee et al.,
2010) and also at lower levels of the auditory system of the anes-
thetized guinea pig, in single units of the ventral cochlear nucleus
(Pressnitzer et al., 2008).

The build-up of stream segregation and the dependence on FD
and PR are often held to result from ‘primitive’ processing (Macken
et al., 2003). However, ‘schema-based’ processes such as attention
(van Noorden, 1977; Bregman, 1990) and spontaneous perceptual
changes (flipping between two different perceptions of the same
stimulus: Pressnitzer and Hupe, 2006) HuHupoe clearly influence
stream segregation. Similarly, non-invasive imaging studies
demonstrate both bottom-up (Snyder et al., 2006; Sussman et al.,
2007) and top-down effects (Hillyard et al., 1973; Alain and
Woods, 1994; Gutschalk et al., 2005; Cusack, 2005; Snyder et al.,
2006; Bidet-Caulet et al., 2007; Hill et al., 2011; Lakatos et al., 2013).

Previous neurophysiological studies of auditory streaming in the
cortex were conducted in awake animals, but, with one exception
(Micheyl et al., 2005) the animals were listening passively and
attention was not controlled. Here, to identify those elements of
streaming that are based only upon primitive (bottom-up)

processing, we characterize streaming in neural responses in the
auditory cortex of anesthetized animals, where there are no effects
of attention. The current study is partly at the single unit level and
hence complements the previous studies in cortex which reported
the combined responses of several neurons at a time using either
multi-unit (Fishman et al., 2001, 2004; Bee et al., 2010) or current
source density analysis of local field potentials (Fishman et al., 2001,
2004). It also provides a basis for comparison with other studies of
cortical adaptation and suppression in anesthetized animals (e.g.
Ulanovsky et al., 2004; Scholes et al., 2011; Taaseh et al., 2011).

2. Methods

2.1. Subjects and surgical procedures

Experiments were performed on 12 pigmented guinea pigs of
both sexes weighing 370e737 g (mean 565 g). All animals were
anesthetized with an intra-peritoneal injection of urethane (4.5 ml/
kg in a 20% solution), supplemented with intra-muscular injections
of 0.2ml Hypnorm (Fentanyl citrate 0.315mg/ml, fluanisone 10mg/
ml) whenever a forepaw withdrawal reflex could be elicited. A pre-
medication of 0.06 mg/kg Atropine Sulphate was administered
subcutaneously to suppress bronchial secretions. Each animal was
tracheotomised, artificially respired and core temperature was
maintained at 38 �C by means of a heating blanket. The animals
were placed in a stereotaxic frame with hollow plastic speculae
replacing the ear bars, inside a sound-attenuating room. To equalize
pressure across the tympanicmembrane, the bulla on each sidewas
vented with a polyethylene tube (22 cm long, 0.5 mm diameter).
The membrane overlying the foramen magnum was opened to
release the pressure of the cerebrospinal fluid. A craniotomy with a
diameter of around 5 mm was performed to expose the primary
auditory cortex, the dura was removed and the brain was covered
with a layer of 1.5% Agar. A linear multi-electrode array, consisting
of four to eight glass-coated sharp tungsten micro-electrodes was
advanced together and directly into auditory cortex using a
piezoelectric motor (Burleigh Inchworm IW-700/710). All experi-
ments were conducted under license from the Home Office in the
UK.

2.2. Acoustic stimuli and electrophysiological recording

Auditory stimuli were delivered diotically through sealed
acoustic systems, consisting of modified Radio Shack 40e1377
tweeters coupled to damped probe tubes that fitted into the
speculae. The maximum output level of the systemwas calibrated a
few mm from the eardrum using a 1 mm probe tube microphone
(Bruel & Kjaer 4134). This was to ensure that sound levels were
consistent across experiments (±3 dB). All stimuli were generated
by an array processor (TDT AP2, Alachua, FL, USA) and output at a
sample rate of 100 kHz. Stimulus control was from a PC using
Brainware (developed by J. Schnupp, University of Oxford). Re-
sponses from the electrodes were acquired using a Medusa Head-
stage and Tucker Davis RX7, sampled at 25 kHz with 16-bit
resolution, and digitally filtered (300 Hze3 kHz) and amplified
(~� 40 k). Spike waveforms and spike times were recorded to disk
by Brainware. They were further analyzed off-line with Plexon
(Dallas, TX) spike-sorting software to isolate action potentials from
separate single units (SU) and multi-unit (MU) clusters.

2.3. Stimuli

We presented sequences of interleaved ABAB tones (where A
and B are different frequencies), as used previously to investigate
the effect of varying FD and PR (Fishman et al., 2004). Tones were
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