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1. Introduction

Diseases commonly occur in nature and affect communities.
Their role in the shaping the dynamics of populations has been
understood since quite some time, with the development of
mathematical models for the forecasting of their effects and their
possible control. Classical models in this context are the early
works on SIRS (Susceptible-Infected-Recovered-Susceptible) mod-
els, but during the past century a wealth of other models have been
proposed and studied; we mention only the use of the Monod-
Haldane function to model the response of individuals to the
spread of epidemics, by lowering their contact rates, or models
explicitly including viral agents among the systems’ populations,
see the review (Hethcote, 2000) for a full account of the field.

Only toward the end of the century epidemic models for
populations that vary in time have been introduced, (Busenberg
and Driessche van den, 1990; Mena-Lorca and Hethcote, 1992),
and this opened up the way for the consideration of disease effects
on interacting populations. This has now become an independent
field of research, starting from the early papers (Hadeler and
Freedman, 1989; Beltrami and Carroll, 1994; Venturino, 1994,
1995). More sophisticated models have then been proposed,
(Chattopadhyay and Arino, 1999; Haque and Venturino, 2006),

building a field now named ecoepidemiology. For a summary of the
first steps into it, see the Part I of (Malchow et al., 2008).

The demographic interactions among populations occupying
the same territory have been modeled in various ways, ever since
the original investigations of Lotka and Volterra, (Malchow et al.,
2008). Other models that are now classical are the Holling–Tanner
and Leslie-Gower, (Holling, 1965; Tanner, 1976). In more recent
years, the concept of prey group defense has been introduced.
Originally, (Freedman and Wolkowicz, 1986), this has been
proposed by considerations on possible changes in qualitative
properties of the response functions. A recent novel contribution
however models the fact that it is the individuals at the edge of
the herd that generally suffer the heaviest consequences of the
predators’ attacks. Therefore only the subpopulation of individuals
that occupy the outermost positions of the flock should be
accounted for interactions with predators. Its size is easily
identified as being proportional to the perimeter of the area
occupied by the herd. This ultimately depends on the square root of
the population density, (Ajraldi et al., 2011). The resulting system
of differential equations therefore contains a square root term that
renders them markedly different from the classical quadratic
predator–prey interactions. As a consequence, the dynamics is
deeply affected, as this model exhibits limit cycles, which are
known to be impossible to arise in the models constructed with
bilinear interaction terms. The idea has been further exploited in
(Braza, 2012). In the context of predators’ behavior see also related
concepts in (Cosner et al., 1999).
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A B S T R A C T

In this paper we consider a model for the herd behavior of prey, that are subject to attacks by specialist

predators. The latter are affected by a transmissible disease. With respect to other recently introduced

models of the same nature, we focus here our attention to the possible feeding satiation phenomenon.

The system dynamics is thoroughly investigated, to show the occurrence of several types of bifurcations.

In addition to the transcritical and Hopf bifurcation that occur commonly in predator–prey system also a

zero-Hopf and a global bifurcation occur. The Hopf and the global bifurcation occur only in the disease-

free (so purely demographic) system. The latter is a heteroclinic connection for the between saddle

equilibrium points where a stable limit cycle is disrupted and where the system disease-free collapses

while in a parameter space region the endemic system exists stably.
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The combination of both the above ideas, namely disease
affecting interacting populations and herd behavior, has been
explored first in (Venturino, 2011), a study in which the epidemic
is assumed to affect the prey, and then in (Belvisi and Venturino,
2013), for the case of diseased predators. In plankton dynamics,
this idea has been explored in (Chattopadhyay et al., 2008; Romano
et al., 2014), where it is assumed that toxic phytoplankton
agglomerates in patches and releases poison through their surface.

Here we want to make a step further, considering also the
satiation effect experienced by predators when one type of prey is
available in large quantities. After a certain time, the predators
disregard the too much abundant food, so that their hunting rate
becomes smaller. This phenomenon was firstly modeled in the
context of chemical reactions, it is the well-known Michaelis-
Menten type dynamics. Later on, in mathematical biology, it has
been renamed as Holling type II response function. Here we study
this type of situation, combined with the prey gathering together
for self-defense purposes. The situation was first proposed in
(Gimmelli, 2012) and thoroughly elaborated here, accounting for
the epidemics affecting the predators and thereby extending the
model (Belvisi and Venturino, 2013). The field evidence of a
maximal possible intake of food in a given timespan represents a
major reason for proposing this investigation, in that the present
model is more adherent to what in fact happens in reality. For
drifting herbivores in the savannas, moving in very large herds and
subject to individual attacks of predators, the likelyhood that they
are hunted in the way we describe here is evident. On the other
hand, it is well-known also that a large predator after capturing
and ingesting a prey, needs some time to digest it, during which the
animal remains inactive, from the hunting point of view. A
renowned example is provided for instance by the large snakes,
after killing a small mammal they remain idle for quite a bit of
time, ranging up to a couple of weeks.

The model is analyzed using bifurcation theory (Guckenheimer
and Holmes, 1985; Wiggins, 1988, 1990; Kuznetsov, 2004), where
the asymptotic behavior of the system (equilibria, periodic cycles,
chaos) is evaluated under parameter variation for qualitative
changes. A qualitative change in the asymptotic behavior is then
referred to as a bifurcation point. For examples of ecological
applications in general we refer to (Bazykin, 1998; Kooi, 2003) and
references therein. The organizing center of the bifurcation pattern
of the model is a point where transcritical, zero-Hopf and Hopf
bifurcations intersect. Also a global bifurcation occurs namely a
between two saddle equilibrium points. For analysis techniques of
this type of heteroclinic connection see (van Voorn et al., 2010).

The paper is organized as follows. We present at first the pure
demographic model, since we will need to compare the final
results of the ecoepidemic model against its behavior. It is analyzed
in Section 2, as on its own it is a new model, differing, as we
discussed above, from the classical Holling type II model because it
contains the square root term for group defense. It also differs from
the herd behavior model presented in (Ajraldi et al., 2011), because
it takes into account the feeding satiation phenomenon. In
Section 3 we move then to the case of the predators being
affected by the disease. In Section 4, the full bifurcation analysis is
carried out, completed for the special instance of codimension two
bifurcations in Section 5. A final discussion concludes the paper.

2. The interacting population model

We begin with the pure demographic model presentation and
analysis, for later comparison purposes. Per se, this is already a new
model, extending the basic models considered in (Ajraldi et al.,
2011; Belvisi and Venturino, 2013) to the case of feeding satiation
coupled with group behavior. There is therefore also an intrinsic
interest in its analysis. In broad lines, the ecosystem under

consideration can be described as two populations living in the
same environment, each however with different demographic
characteristics. In particular the predators behave individually,
while the prey instead gather together looking for pastures. Their
whole population therefore occupies a contiguous piece of ground.
The basic assumption underlying these types of models, (Ajraldi
et al., 2011; Belvisi and Venturino, 2013), states that only, or
essentially the majority, of the individuals being attacked by the
predators will be located at the edge of the territory on which the
prey reside. The number of the victims of the attacks will therefore
be proportional to the length of a narrow stripe around the
boundary of the herd. Since this is essentially a one-dimensional
manifold, it is related to the area occupied by the herd via a square
root function. The same relationship must therefore hold between
the number of individuals suffering attacks at the boundary and
the whole prey population. Further, it is widely recognized that an
expression of the food intake better than the standard quadratic
interactions of the Lotka–Volterra model is represented by the
well-known Michaelis–Menten or otherwise called Holling type II
response function, in that it sets an upper bound on the possible
daily prey consumption. Assuming that the prey reproduce
logistically, and that predators are specialists, i.e. they do not
have other food sources, and have a bound on the amount of food
they can injest per unit time, which is, as mentioned, expressed via
the Holling type II response function, we can describe the
interactions as follows
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We remove the singularity that arises in the Jacobian whenbR ¼ 0, by setting bP ¼
ffiffiffibRp > 0 thus obtaining
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which holds for bP > 0, since in the first equation we have simplifiedbP on both sides. The case bP ¼ 0 corresponds to setting bR ¼ 0 into (1)
and therefore obtaining that also the predators vanish exponen-
tially fast. The behavior of this purely demographic model has been
discussed in depth in (Braza, 2012), especially for the analysis of
the equilibrium with vanishing population. The analysis of (Braza,
2012) however makes the simplifying assumption of a HTI model,
i.e. setting th = 0 into (2).

We nondimensionalize it using the following substitutions

PðtÞ ¼ abPðtÞ, FðtÞ ¼ bbFðtÞ, t = dt. We thus find dbP
dt ¼ d=adP=dt,

dbF=dt ¼ d=bdF=dt. Back substitution into (12) gives
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With the choices

b ¼ a ; K ¼ a2 bK ; a ¼ tha ; d ¼ 1

2
; (4)
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