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1. Introduction

Statistical mechanics of ecological processes have been identi-
fied as a promising direction of research that can create a unifying
framework for many diverse applications (Levin, 2012). Animal
dispersal is a key factor that underlies a variety of phenomena in
spatial ecology (Bullock et al., 2002; Clobert et al., 2001) where
application of concepts and tools of statistical mechanics has
proved to be especially useful and insightful (Bartumeus et al.,
2008; Viswanathan et al., 2011; Lewis et al., 2013). A major focus of
research has been on understanding of how far individual animals
can travel over a given time or, equivalently, how fast the mean
squared displacement (MSD), d2(t) = h(r(t) � r(0))2i (where r(t) is
the position of the animal at time t), can grow with time
(Viswanathan et al., 2011, 1996). Whilst d2 � t corresponds to the
standard diffusion and to the Brownian motion as the underlying
stochastic process (Chorin and Hald, 2006; Kareiva, 1983; Turchin,
1998), the case d2 � t

g
with g > 1 is conventionally referred to as

the ‘‘superdiffusion’’ and is linked to Levy flights and Levy walks
(Viswanathan et al., 2011; Klafter and Sokolov, 2005; Shlesinger
et al., 1993).

In field observations or laboratory experiments, for technical
reasons the position of individual animal(s) is usually recorded not
continuously but with a finite time-resolution or time-step, say Dt

(Viswanathan et al., 1996; Turchin, 1998; Mashanova et al., 2010).
In the corresponding time-discrete framework, individual animal
movement is described by the dispersal kernel r(l) that gives the
probability distribution of the distance l traveled by an animal
during the time Dt. In the case of Dt being sufficiently small, the
distance l can be regarded as a step made along the movement path
over the given time. The product r(l)dl gives the probability that an
individual released at t = 0 will, after the time Dt, be found at a
distance between l and l + dl from the point of its release. A ‘thin-
tailed’ dispersal kernel with the rate of decay at large l being
exponential or faster corresponds to the Brownian motion; a ‘fat-
tailed’ kernel with the power-law rate of decay at large distances,
r(l) � l�1�m

where 0 < m < 2, is associated with the Levy flight
(Viswanathan et al., 2011, 1996; Shlesinger et al., 1993; Sornette,
2004). In the intermediate case m � 2, the random walk slowly
converges to the Brownian motion in the multi-step limit. Because
of the lower rate of decay, a fingerprint of the Levy flight is a much
higher frequency of the long-distance travel compared to the
Brownian motion. Understanding of the fat-tailed/long-distance
dispersal is important as it may significantly affect the rate of
biological invasions (Kot et al., 1996; Shigesada and Kawasaki,
2002), the rate of pathogens spread (Brockmann et al., 2006),
conditions of species persistence in fragmented landscapes
(Baguette, 2003; Levin et al., 1984), etc. This is one of the reasons
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A B S T R A C T

Peculiarities of individual animal movement and dispersal have been a major focus of recent research as

they are thought to hold the key to the understanding of many phenomena in spatial ecology.

Superdiffusive spread and long-distance dispersal have been observed in different species but the

underlying biological mechanisms often remain obscure. In particular, the effect of relevant animal

behavior has been largely unaddressed. In this paper, we show that a superdiffusive spread can arise

naturally as a result of animal behavioral response to small-scale environmental stochasticity.

Surprisingly, the emerging fast spread does not require the standard assumption about the fat tail of the

dispersal kernel.
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why patterns of individual animal movement have been a focus of
considerable interest (Benhamou, 2007; Codling et al., 2008;
Edwards et al., 2007; Viswanathan et al., 2008; Reynolds, 2010;
Turchin, 1996).

Fat-tailed kernels correspond to animal spread at a much faster
rate than that predicted by the Brownian motion; the fatter the
kernel, the faster is the growth of the MSD with time. A question
arises here as to whether quantification of the rate of spread in terms
of the MSD can still be meaningful for the Levy flights because, in a
strict mathematical sense, kernels with the power-law decay do not
possess a finite variance for m � 2. There are, however, several ways
to overcome this difficulty. For instance, one can introduce a finite
characteristic speed of the travel, thus turning Levy flights to Levy
walks (Shlesinger et al., 1993, 1987). A similar approach is based on
exclusion of very large steps (hence effectively truncating the kernel
at large distances) as the probability of their occurrence in any finite
sample is extremely small (Sornette, 2004). Alternatively, one can
consider a pseudo-MSD by calculating the moment of a lower
(fractional) order (Viswanathan et al., 2011). Interestingly, all these
approaches result in the same relation between the exponent g in
the rate of spread and the exponent m in the rate of decay in the
dispersal kernel, namely, g = 2/m (where 0 < m � 2). Correspond-
ingly, the case m = 1 results in the ballistic-like spread with d2 � t2

and the case m = 2/3 results in a turbulent-like spread with
d2 � t3. Evaluating the value of g is therefore a universal way to
quantify the rate of animal dispersal across a broad range of different
movement patterns.

There is now significant evidence (Ramos-Fernández et al.,
2004; Reynolds, 2012; Reynolds et al., 2013, 2007; Sims et al.,
2008) that animals of different taxa may employ the superdiffusive
movement pattern; however, little has been done to understand
the mechanisms behind the Levy walks. This evokes the classical
problem of revealing the process resulting in a given pattern
(Levin, 2012, 1992). The existing theoretical framework is largely
descriptive and is mostly focused on the properties of the step
length distribution, e.g. arguing whether it is fat-tailed or not. The
animal itself is often considered quite schematically, i.e. as a
particle or even as a ‘‘robot’’ (Gautestad, 2013), simply assuming
that, at certain moments of time, the next travel distance is
somehow drawn from a given distribution.

Meanwhile, one important factor that distinguish animals from
particles is behavior. Particles cannot make decisions but animals
can (Rankin, 2002; Sinn et al., 2001). Behavior has indeed been
identified as an essential factor affecting the movement pattern
(Reynolds, 2012; Owen-Smith et al., 2010) but its impact on animal
movement and dispersal has only been considered on large spatial
and temporal scales, e.g. as corresponds to animal movement over
a large foraging area. The main objective of this paper is to show
that animal behavior exhibited on a much smaller scale of a single
step along the path is a crucial factor that can affect the movement
pattern. Specifically, we are going to show that, in a noisy
environment, animal’s basic reaction to external clues can turn the
movement into superdiffusion.

Our arguments are as follows. During their movement, animals
receive cues or ‘signals’ from their environment. Such cues can be
of visual, auditory or olfactory origin. Through these cues, animals
become aware of the presence of predators, of the availability of
food (e.g. by perceiving an odor), of the presence of a mating
partner (e.g. by detecting female pheromones), etc. The cues
therefore bring information that is vital for the animal’s well-
being. The animals respond to the cues by making decisions about
their movement; in their conceptual paper, Nathan et al. (2008)
referred to this situation as ‘‘why move’’. Exact timing of the cues is
difficult or perhaps even impossible to determine though, as it is
affected by many different factors, some of them being either
unknown or having a large uncertainty, or being stochastic. For

instance, the smell is brought in with the air flow which is often
turbulent. Correspondingly, we assume that the timing of the cues’
perception can be regarded as random. Altogether, the cues can be
regarded as a small-scale environmental stochasticity.

The standard approach to animal movement (Viswanathan et al.,
2011; Turchin, 1998; Codling et al., 2008) consider animals making
‘steps’ along their movement path so that, at certain moments of
time, the length of the next step is drawn from a given probability
distribution. It apparently implies that the moving animal makes
a decision with regard to where it wants to be after a time Dt, i.e.
about its next position on the movement path. Correspondingly, the
animal has to possess certain cognitive powers enabling it to plan its
future actions or future state (such as its next location), at least over
a certain relatively small period of time. However, here we argue
that this is hardly feasible. While some mammals like apes or dogs
may be capable of some elementary planning, the existence of
similarly complex behaviors in lower animals (e.g. invertebrates) is
highly unlikely. To the best of our knowledge there is no evidence
that invertebrates can exhibit a reaction more complicated than an
immediate response to a stimulus. On the other hand, the response
to a stimulus through an involuntary reflex action resulting in a
muscle contraction is a common physiological property of animals
(Purves et al., 2004). We therefore assume that the decision taken
by the animal as a response to the environmental cues has an

immediate effect. Specifically, we assume that the decision is
implemented by changing the magnitude of the force that the
animal exerts in order to maintain its movement.

In the next section, we translate the above assumptions into a
model and undertake a comprehensive study of the properties of
the corresponding movement pattern.

2. Model and results

The animal movement as a response to external signals or cues
may be formally described as a sequence of bouts. A bout ends (and
the next bout starts) when the animal receives a cue from the
environment. We are considering the situation when the signals
are distributed in time homogeneously (in the statistical sense) so
that the mean number of cues received during a time interval
depends only on its duration, say t, but not on its starting moment.
With the further assumption that for a small t the probability of
receiving more than one cue is negligible, we have a situation that
coincides precisely with the one resulting in the Poisson
distribution. If we denote by v the mean number of cues per
unit time, then the probability that an animal receives at least one
cue during the time t is

PtðvÞ ¼ 1 � e�vt: (1)

Here parameter v accounts for the properties of environmental
noise but it is also related to the biology of the dispersing animals,
because it depends on their perception threshold.

Eq. (1) gives the probability that the movement will be
interrupted during the time interval (0, t), i.e. that the duration
of the given bout will not exceed t. In order to obtain the
probability density of bout duration, we need to differentiate
Eq. (1) with respect to t, which results in the following exponential
distribution:

cðtÞ ¼ ve�vt: (2)

Correspondingly, hti=1/v is the characteristic time between the
subsequent cues.

Upon receiving a cue, the animal changes its movement by
exerting a force, i.e. by changing its acceleration. It is reasonable to
expect that the animal tries to optimize its energy expense, and
hence it is only accelerating for a certain time, say t (which can be
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