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1. Introduction

Mutualistic interactions are ubiquitous in nature, but they are
not well understood theoretically (Neuhauser and Fargione, 2004).
Among theoretical models established for mutualisms, Lotka–
Volterra equations (LVEs) are the most famous. In the LVEs of
mutualisms, mutualists can coexist at a steady state if mutualisms
between them are weak. However, when the mutualisms are
strong, the LVEs predict that population densities of the species
increase infinitely, which is the so-called divergence problem
(Iwata et al., 2011). The underlying reason is that in the mutualism
system, each species is assumed to have only positive effect on the
other without any negative feedback. This is not always true in
natural environment. As pointed out by Agrawal et al., almost all of
the interactions in nature are bidirectional (Agrawal et al., 2007).
That is, there usually exist negative feedbacks in mutualisms.

Empirical observations demonstrate bidirectional interactions
in many mutualism associations. In a cooperative association of
bacteria, each species lives off products of another although
neither of them can survive alone. Since they live in the same
environment, there exists interspecific competition because of
nutrient and spatial limitations (Keller and Surette, 2006;
Cornforth and Foster, 2013). In particular, scientists are using

mutualistic bacteria as the key ingredient in a biological light bulb,
a bacteria-powered light bulb that requires no electricity. ‘‘The
Biobulb is essentially a closed ecosystem in a jar. It contains several
different species of microorganisms, and each organism plays a
role in the recycling of vital nutrients that each of the other
microbes need to survive’’ (http://news.discovery.com/tech/
alternative-power-sources/bacteria-powered-light-bulb-is-
electricity-free-130815.htm). Those microorganisms feed the
Escherichia coli, which will emit light. Gilbert’s study of interactions
between Mullerian mimics exhibits that when the species are at
low density, they are mutualistic since they facilitate the training
of predators in recognizing unpalatable prey (Gilbert, 1983).
However, when at high density, the species are competitive since
they share resources. In pollination-mutualisms, plants provide
nectar, pollen and other resources for pollinators, while pollinators
transport pollen for the host plant. However, adult pollinators
often lay eggs in flowers of the plant, from which larvae eat seeds
and reduce the growth rate of plants (Wang et al., 2012). For more
relevant works, we refer to Zhang (2003), Hernandez (1998), Wang
and Wu (2011) and Wang and Wang (2015).

There are many models in describing mutualisms with
bidirectional interactions, but most of them are difficult to be
analyzed thoroughly. Thus, properties of mutualisms cannot be
demonstrated as clearly as those shown by LVEs for competition/
predation. Iwata et al. presented a lattice gas model of mutualisms,
which is derived from reactions on lattice and has a form similar to
that of LVEs (Iwata et al., 2011). While local stability analysis and

Ecological Complexity 23 (2015) 41–49

A R T I C L E I N F O

Article history:

Received 30 September 2014

Received in revised form 18 June 2015

Accepted 26 June 2015

Available online 18 July 2015

Keywords:

Mean-field theory

Lattice gas system

Cooperation

Stability

Coexistence
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In Lotka–Volterra equations (LVEs) of mutualisms, population densities of mutualists will increase
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avoid the problem, a mutualism system of two species is analyzed in this work. The model is derived

from reactions on lattice and has a form similar to that of LVEs. Population densities of species will not

increase infinitely because of spatial limitation on the lattice. Stability analysis of the model

demonstrates basic mechanisms by which the mutualisms lead to coexistence/extinction of the species.

When in coexistence, intermediate mutualistic effect is shown to lead to the maximal density in certain

parameter ranges, while a strong or weak mutualistic effect is not so good. Furthermore, the stability

analysis exhibits that extremely strong/weak mutualisms will result in extinction of one/both species.
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numerical simulations on the model display novel properties of
mutualisms, global stability and complete simulations need to be
shown. Therefore, a thorough analysis of the model is necessary to
demonstrate more properties of mutualisms (Jones et al., 2012).

In this paper, the lattice gas model of mutualisms established by
Iwata et al. (2011) is studied. Stability analysis of the model
demonstrates basic mechanisms by which the mutualisms lead to
coexistence/extinction of the species: (i) When neither species can
survive in the absence of the other, the species can coexist if
mutualisms between them are strong and population densities of
the species are large, which describes the Allee effect in obligate
mutualisms. (ii) When one species can persist in the absence of the
other but the other cannot survive alone, the obligate species can
survive if mutualism from the facultative one is strong, which
implies that an obligate species can survive by cooperating with a
facultative one. Even when the mutualism from the facultative one
is intermediate, the obligate species can survive if its mutualistic
effect on the facultative one is strong and its population density is
large, which exhibits that an obligate species can survive by both
strengthening its mutualistic effect on the other and enhancing its
population density. (iii) When either species can survive in the
absence of the other, a weak mutualism can lead to extinction of
mutualists, which demonstrates a mechanism how an unbalanced
mutualism leads to collapse of a cooperative association.

Furthermore, our analysis shows that extremely strong/weak
mutualisms will result in extinction of one/both species, while
strong mutualisms can lead to coexistence of species. When in
coexistence, intermediate mutualistic effect is shown to lead to the
maximal density in certain parameter ranges, while a strong or
weak mutualistic effect is not so good. While seven typical types of
dynamics of the system are displayed by simulations by Iwata et al.
(2011), these types are confirmed by rigorous analysis in this paper
and a new one is demonstrated (see Remark 3.3).

The paper is organized as follows. The model is characterized in
Section 2. Section 3 displays global stability analysis. Discussion is
in Section 4.

2. A lattice gas model

Lattice models have been applied in ecology in recent papers
(Iwata et al., 2011). On the lattice, a site can be occupied by one
individual of the species, while interactions between sites are
classified into local and global ones. In local interactions, a site
interacts with its adjacent sites, which means that the sites
have common boundaries. In global interactions, a site interacts
with any site on the lattice, which is called a lattice gas system.

Firstly, we consider a lattice gas system of one species A, where
the interaction between sites is called ‘‘contact process’’ (Iwata
et al., 2011):

A ! E with death rate d
A þ E ! 2A with reproductive rate r

where A represents an individual of species A (i.e., a site occupied
by A), and E is the empty site. The first and second reactions
represent the death and reproductive processes, respectively. In a
lattice model, the second reaction occurs between adjacent sites. In
a lattice gas model, the second reaction occurs between any pair of
sites on the lattice in a random and independent way. The lattice
gas model can be depicted by

dN

dt
¼ N½�d þ krðM � NÞ�

where M is the total number of sites on the lattice. Variables N and
M � N represent the densities of species A and empty sites,

respectively. k is the possibility that an individual of species A

meets an empty site, which is determined by searching ability of
the species, etc. Thus, the second term ‘‘kr(M � N)’’ on the
righthand side of the model describes the reproductive process:
the new-born individuals (r) interact with the empty sites (M � N)
in a random and independent way and the possibility that an
individual meets an empty site is k, which forms the successful
reproduction ‘‘kr(M � N)’’. On the other hand, the first term ‘‘�d’’
describes the death process.

Second, in a lattice gas system of two species A and B, a site is
labeled by A (B) if it is occupied by an individual of species A (B). If a
site is empty, then it is labeled by E. The site occupied by species A

(B) will become E in a death rate D1 (D2). On the lattice, reaction
occurs between any pair of sites randomly and independently.
When a site A meets an empty site E, the site E will become A in a
reproductive rate R1. Hence, the reactions in species A can be
described by

A ! E with rate D1

A þ E ! 2A with rate R1

where the reproductive rate of A satisfies R1 = r1 + a1N2 (Iwata
et al., 2011). Parameter r1 represents the intrinsic growth rate of
species A in the absence of B, and the term ‘‘a1N2’’ comes from the
mutualism of species B, which is explained as follows. Here, the
variable N2 denotes the population density of species B and
parameter a1 represents the mutualistic effect of an individual of
species B on the reproduction of A, which is defined by

a1 ¼ eAsB

where sB is the quantity of resources (or services) provided by an
individual of species B, and eA denotes the efficiency of species A in
converting the resources into fitness. For example, in a cooperative
association of bacteria A and B, sB represents the quantity of
products by an individual of B and eA is the efficiency of A in
converting the products into fitness. Thus, a1N2 denotes the
mutualistic effects of bacteria B on the reproduction of A. Since D1

denotes the death rate of A, we have r1 > 0, a1 > 0, D1 > 0.
Similarly, reactions in species B can be described by

B ! E with rate D2

B þ E ! 2B with rate R2

where R2 = r2 + a2N1. Parameters r2 and a2(= eBsA) represent the
intrinsic growth rate of species B, mutualistic effect of species A on
B, respectively. Variable N1 denotes the population density of
species A. Since D2 denotes the death rate of B, we have r2 > 0,
a2 > 0, D2 > 0.

When the lattice size is sufficiently large, population dynamics
of the lattice gas system are usually depicted by differential
equations, which are called the mean-field theory of lattice model
(Dieter, 2000). Let M be the total number of sites that can be
colonized on the lattice. Then the number of empty sites is
M � N1 � N2. Thus, the growth of the species can be described by

dN1

dt
¼ N1½�D1 þ k1R1ðM � N1 � N2Þ�

dN2

dt
¼ N2½�D2 þ k2R2ðM � N1 � N2Þ�

(2.1)

where R1 = r1 + a1N2 and R2 = r2 + a2N1. The parameter k1(k2)
represents the possibility that an individual of species A(B) meets
an empty site. The first and second terms at the righthand sides of
(2.1) denote the death and reproductive process of each species,
respectively. Thus system (2.1) has a form similar to that of LVEs.

The maximal density that the species can approach is shown as
follows. Let N2 = 0 in the first equation of (2.1), we obtain

S. Wang, Y. Wang / Ecological Complexity 23 (2015) 41–4942



Download English Version:

https://daneshyari.com/en/article/6292492

Download Persian Version:

https://daneshyari.com/article/6292492

Daneshyari.com

https://daneshyari.com/en/article/6292492
https://daneshyari.com/article/6292492
https://daneshyari.com

