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1. Introduction

In spite of the fact that nonlinearity firmly settled in the most
paradigms of modern theoretical population ecology, linear matrix
models of discrete-structured population dynamics are widely
used in the practice of plant and animal demography as a tool to
evaluate the growth potential of a population in a given
environment (Salguero-Gómez and de Kroon, 2010; Salguero-
Gómez and Plotkin, 2010), the number of applications has been
recently increasing world-wide (MPIDR, 2012). The stage is
understood in a generalized sense, as any discrete (or discretized)
characteristic that can be used to classify the status of individuals
in a population (Caswell, 2001).

For a stage-structured population x governed by a constant
matrix L of size n � n:

xðt þ 1Þ ¼ L xðtÞ; t ¼ 0; 1; 2; . . . ; (1)

the dominant eigenvalue (or the Perron root), l1, of the projection

matrix L serves as the analogue to the scalar population growth
rate for the case of vector growth. Matrix L consists of survival and
fertility rates, which are status-specific, while the pattern of nonzero
matrix entries is isomorphic to the associated directed graph

(Harary et al., 1965; Svirezhev and Logofet, 1978; Horn and
Johnson, 1990). The great advantage and practical appeal of matrix
population models stem from the fact the digraph associated to the
projection matrix coincides with the life cycle graph (Caswell, 1989,
2001), or the LCG (Logofet and Belova, 2008), a kind of biological
knowledge related to the population under study.

The dominance of l1 ensues from the Perron–Frobenius
theorem for nonnegative matrices provided that the matrix is
indecomposable and primitive. These conditions can be verified for
a given matrix L through its associated digraph (Horn and Johnson,
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A B S T R A C T

Linear matrix models of stage-structured population dynamics are widely used in plant and animal

demography as a tool to evaluate the growth potential of a population in a given environment. The

potential is identified with l1, the dominant eigenvalue of the projection matrix, which is compiled of

stage-specific transition and fertility rates. Advanced botanical studies reveal polyvariant ontogeny in

perennial plants, i.e., multiple different versions of individual development within a local population of a

single species. This phenomenon complicates any standard, successive-stage, life cycle graph to a

digraph defined on a 2D lattice in the age and stage dimensions, the pattern of projection matrix

becoming more complex too. In a kind of experimental design, the transition rates can be calculated

directly from the data for two successive time moments, but the age-stage-specific rates of reproduction

still remain uncertain, adding more complexity to the calibration problem. Simple additional

assumptions could technically eliminate the uncertainty, but they contravene the biology of a species

in which polyvariant ontogeny is considered to be the major mechanism of adaptation. Given the data

and expert constraints, the calibration can be reduced instead to a nonlinear maximization problem, yet

with linear constraints. I prove that it has a unique solution to be attained at a vertex of the constraint

polyhedral. To facilitate searching for the solution in practice, I use the net reproductive rate R0, a well-

known indicator for the principal property of l1 to be greater or less than 1. The method is exemplified

with the calibration of a projection matrix in an age-stage-structured model (published elsewhere) for

Calamagrostis canescens, a perennial herbaceous species with a complex (multivariant) life cycle that

features unlimited growth when colonizing open areas.

� 2013 Elsevier B.V. All rights reserved.

Abbreviations: LCG, life cycle graph.

* Tel.: +7 495 625 6571; fax: +7 495 953 1652.

E-mail address: daniLaL@postman.ru

Contents lists available at SciVerse ScienceDirect

Ecological Complexity

jo ur n al ho mep ag e: www .e lsev ier . c om / lo cate /ec o co m

1476-945X/$ – see front matter � 2013 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ecocom.2013.02.004

http://dx.doi.org/10.1016/j.ecocom.2013.02.004
mailto:daniLaL@postman.ru
http://www.sciencedirect.com/science/journal/1476945X
http://dx.doi.org/10.1016/j.ecocom.2013.02.004


1990; Logofet, 1993), or the LCG: the matrix being indecomposable

(or irreducible in some texts) is equivalent to the LCG being strongly

connected (Harary et al., 1965; Horn and Johnson, 1990), and
primitivity ensues, for instance, from the LCG having at least one
self-loop (Svirezhev and Logofet, 1978; Caswell, 1989, 2001;
Logofet, 1993).

While the latter condition fails in the classical Leslie matrix for
an age-structured population (as its principal diagonal consists
exclusively of zeros unless the youngest age class produces
offspring), the original Lefkovitch matrix for a stage-structured
population (Lefkovitch, 1965; Caswell, 1989, 2001) always appears
to be primitive due to its nonzero diagonal elements. For more
complicated LCGs, hence more versatile patterns of the projection

matrix L constructed for generalized stages (Caswell, 2001;
Logofet, 2002), a criterion for the matrix to be primitive reduces
to checking the lengths of all cycles in the LCG (Svirezhev and
Logofet, 1978; Voyevodin and Kuznetsov, 1984; Logofet, 1993;
Caswell, 2001; Logofet and Belova, 2008): those lengths must have
a nontrivial common divisor for the matrix to be imprimitive. In the
absence of 1-cycles (of nonzero diagonal elements), the divisor can
only appear at a quite specific allocation of reproductive stages in
the life cycle.

So, there is no obstacle in theory to define a measure of how a
local population is adapted to its environment as l1(L) where
matrix L collects the vital rates evaluated in that specific
environment. In practice, however, this concept encounters both
general problems of model parameter estimation and specifically
high sensitivity of l1(L) to variations in fertility rates (Caswell,
1989, 2001; Li and Schneider, 2002; Logofet, 2008). However,
there exists an experimental design where the data obtained
enable quite rigorous calculation of the vital rates, rather than
their approximation. This kind of data for a stage-structured
population ‘in which individuals are marked and followed over
time’ was called ‘identified individuals’ (Caswell, 2001, p. 134).
Among several cases which Caswell cited as ‘identified individu-
als’, there are plants ‘in a quadrat’ where ‘each individual is
observed at each time’ (Caswell, 2001, p. 134), and it is so in the
case study I address as a typical example of the calibration
problem.

The woodreed of Calamagrostis canescens (Web) Roth. is a
perennial herbaceous plant able to colonize open forest areas
(windfalls, clear-cuts, etc.) and to often prevent the forest from
renewal in those areas (Ulanova, 2000). The species dominates in
the grass layer of clear-cut areas of coniferous forests in European
Russia. It was studied on permanent sample plots, where each
individual plant, including recruits, was followed over time. The
mark sensing was done once a year, in August (Ulanova and
Demidova, 2001; Ulanova et al., 2002). The plants reproduce
mostly through vegetative expansion by horizontal rhizome
sprouts, so that the parent plant can hardly be determined
without destroying the plot, hence the recruited plants can only be
counted in total, rather than attributed to certain reproductive,
status-specific groups of parent plants. Therefore, all identified
individuals had unknown parents in that study. The unknown
parents, in turn, bring uncertainty into the calculations of fertility
rates for identified individuals. Nevertheless, the calibration of
matrix L deserved no special attention in a number of plant case
studies (Pfister, 1998; Ehrlén, 2000; Ehrlén and Lehtilä, 2002;
Ramula and Lehtila, 2005) – perhaps, because it was provided by
computer routines. Yet it remained unclear how the uncertainties
were overcome in those routines.

It will be seen that C. canescens LCG features what motivates
speaking of complexity in linear matrix models, namely, poly-

variant (or multivariant) ontogeny, i.e., multiple different versions
of individual development within a local population of a
single species. This phenomenon complicates any standard,

successive-stage, life cycle graph to a more complex digraph
defined on a 2D lattice in the age and stage dimensions, the pattern
of projection matrix becoming more complex too.

Motivated by C. canescens example, I address the calibration
problem for a general-type matrix population model and formu-
late an extremal principle to eliminate the uncertainty in fertility
rates. The calibration thereafter reduces to a constraint nonlinear
maximization problem, the advance depending on the existence of
a unique global solution to that problem. The corresponding
theorem is proved that establishes sufficient conditions for the
solution to be unique.

In practice, however, checking the theorem conditions for a
given matrix and data may face technical obstacles, while
irrespective maximization by means of a computer routine leaves
it uncertain whether a local maximum returned by the routine
provides for the global one too, the issue requiring further
nontrivial study.

I propose an axillary, heuristic, way to tackle the problem that
makes use of a positive scalar function, R0, of matrix elements well-
known as the net reproductive rate (Cushing and Yicang, 1994;
Cushing, 1998; Caswell, 2001). The fundamental property of R0(L)
consists in its indication ability: R0(L) always lies on the same side
of 1 as does l1(L), thus indicating population growth or decline
simultaneously with l1. The advantage of R0(L) appears due to its
linearity with regard to fertility rates, in contrast to l1(L), for a
wide class of matrix patterns. To solve the linear maximization
problem (under the same constraints as for l1(L)) is both
theoretically and technically simpler, and this causes a practical
benefit from the indication prior to calculation, although these two
solutions do not necessarily coincide. The solutions to both
maximization problems are illustrated with the C. canescens model
and data, after which the indication is discussed as a heuristic tool
to tackle a complicated problem.

2. General form of matrix population models: l1 and R0

revisited

Since Leslie (1945) and Lefkovitch (1965) times, there appeared
a vast variety in the patterns that the projection matrix L of Eq. (1)
may have in the allocation of its nonzero elements called vital rates

(Caswell, 1989, 2001). In a standard matrix model1 (Li and
Schneider, 2002), matrix L can be represented as

L ¼ T þ F; (2)

where nonnegative nonzero matrix T = [tij] is substochastic in
columns, i.e.,

0 <
Xn

i¼1

ti j � 1; j ¼ 1; . . . ; n; (3)

while nonnegative nonzero matrix F = [fij] has no more restrictions
in the most general case. However, for the sake of technical
simplicity, I consider the case where F has only one nonzero row,
and let it be the first row without loss of generality. It means that
population recruitment appears only in the first status group. I will
discuss later how this single-row restriction can be attenuated.

In what follows, matrix (2) is also assumed to be indecomposable

(or irreducible in some texts, e.g., Horn and Johnson, 1990), so that
the Perron–Frobenius theorem for nonnegative matrices guaran-
tees the existence (and the unitary algebraic multiplicity) of
l1(L) > 0 (Horn and Johnson, 1990). However, if L is decomposable,
its maximal indecomposable submatrix L0 should then be

1 Standard for mathematics, the applications feature particular patterns of

matrices T and F.
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