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1. Introduction

Ecological data matrices have long been known as carriers of
information on numerous important ecological phenomena,
including beta diversity and nestedness. Beta diversity was first
defined by Whittaker (1960) as ‘‘the extent of change in
community composition, or degree of community differentiation,
in relation to a complex-gradient of environment, or a pattern of
environments’’. Whittaker (1960) proposed to quantify beta
diversity with two broad categories of measures: beta as a
pairwise dissimilarity coefficient between sites (Anderson et al.,
2006, 2011; Tuomisto, 2010a,b) or as the ratio of two inventory
diversities measured at different scales (i.e. gamma/alpha; Lande,
1996; Veech et al., 2002; Jost, 2007). Recently, Jurasinski et al.
(2009) have named these measures ‘differentiation diversity’
and ‘proportional diversity’, respectively. The overwhelming
majority of beta diversity functions from both groups apply to

presence–absence data (Vellend, 2001; Koleff et al., 2003;
Tuomisto, 2010a,b), including the well-known Jaccard similarity
index adapted by Whittaker (1960, p. 320) to this purpose. Much
less attention is paid to abundance data in beta diversity analysis,
although appropriate expressions are well-known (see e.g.,
Magurran, 2004).

Nestedness refers to the extent the species of smaller
assemblages are a subset of larger assemblages (Atmar and
Patterson, 1993). Similarly to beta diversity, earlier definitions of
nestedness rely exclusively on presence/absence data (Ulrich et al.,
2009) with measures falling into two broad categories: global
coefficients such as the nestedness temperature, and averages of
pairwise indices (see Podani and Schmera, 2012, for review). The
issues of how nestedness may be understood for abundance data
and how abundance estimates influence nestedness measurement
have been raised only recently (Galeano et al., 2009; Araujo et al.,
2010; Almeida-Neto and Ulrich, 2011), therefore our knowledge on
nestedness properties of actual data is even more limited than on
their beta diversity.

Beta diversity and nestedness are not independent features, and
their joint evaluation is promising to reveal and explain ecological
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A B S T R A C T

We describe a procedure for evaluating the relative importance of beta diversity, nestedness, and

similarity properties of ecological data matrices containing density, cover or biomass scores of species.

Our goals are achieved by extension of the simplex approach – originally proposed for presence–absence

data – to abundances. Basically, the method involves decomposition of the Marczewski–Steinhaus

coefficient of dissimilarity between pairs of sites into two fractions, one derived from differences

between total abundance and the other from differences due to abundance replacement. These are

contrasted by the similarity function counterpart, known as the Ruzicka coefficient, and are displayed

graphically using ternary (or 2D simplex) plots. Interpretation is aided by calculating percentage

contributions from these components to the (dis)similarity structure. Measures of replacement and

nestedness are new for abundance data; these are considered complementary phenomena reflecting

antithetic ecological processes that are analogous to those operating at the presence–absence level. The

method is illustrated by artificial data and a range of actual ecological data sets representing different

groups of organisms, different scales and different types of data. While the simplex diagrams and

associated coefficients are meaningful by themselves, their comparison with presence–absence based

results gives additional insight into data structure and background factors.
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factors influencing community composition, structure and func-
tioning. Quantification of their relationship was first suggested by
Baselga (2010) via decomposition of pairwise presence–absence
based dissimilarity into two components. He used the Sørensen
dissimilarity index to measure beta diversity, from which a ‘‘spatial
turnover’’ component expressed by the Simpson dissimilarity
function was distracted to yield a ‘‘nestedness resultant’’ fraction.
Podani and Schmera (2011) and Carvalho et al. (2012, 2013)
proposed an algebraic decomposition of Jaccard dissimilarity as a
measure of beta diversity into a fraction due to species turnover (or
replacement) and another due to difference in the number of
species (richness difference). Podani and Schmera (2011) consid-
ered the second fraction as a contributor to nestedness, in contrast
to replacement which indicates processes completely antithetic to
nestedness. One advantage of the above manipulations with
Jaccard formula is that they can be embedded with ease into a
more general theoretical and methodological framework for
analyzing pattern in presence–absence data. According to Podani
and Schmera (2011), this involves calculating three complemen-
tary indices that measure similarity, relative species replacement,
and relative richness difference for all pairs of sites via partitioning
pairwise gamma diversity into three additive components, and by
displaying the results in a two-dimensional simplex diagram, or
ternary plot. In this diagram, a point corresponds to a pair of sites,
and the shape and position of the point cloud is informative about
community pattern. Percentages are especially useful to evaluate
the relative importance of beta diversity, nestedness and
agreement in species richness in presence–absence data matrices.

As mentioned earlier, evaluating beta diversity and nested-
ness in abundance data poses no methodological problems, but
there is no general conceptual framework available which
handles these aspects of abundance pattern simultaneously.
The aim of this paper is thus to extend the simplex approach to
abundances (cover, density, biomass, etc.) using the Marc-
zewski–Steinhaus coefficient of dissimilarity and its similarity
function counterpart, known as the Ruzicka coefficient. First, we
present a summary of abbreviations and new definitions, and
then present results for artificial and actual community data.
These results demonstrate the utility of our approach in
comparing features of presence–absence and abundance data
for the same set of study sites.

2. Abbreviations, definitions and functions

Let the abundance data for two sites j and k be presented in
vectors xj and xk. The number of species in the two sites is n, while
the number of sites in the dataset is m. The description of different
functions starts with those reflecting proportions, which are
analogous to the indices described in Podani and Schmera (2011)
for presence absence data. All functions listed below have a
theoretical range of [0, 1]. We assume with good reason that no
empty sites appear in the data, so that the denominators of
functions that follow can never be zero.

The similarity of sites j and k based on abundances of n species is
expressed as the Ruzicka (1958) index

SRuzð j;kÞ ¼
Pn

i¼1 min fxi j; xikgPn
i¼1 max fxi j; xikg

: (1)

The numerator is the total amount of abundances in which the
two sites agree, while the denominator is the possible maximum
agreement, henceforth denoted by Tjk. The value of SRuz is 1 if the
two sites have identical values for all species, and zero if a positive
score in site j is associated with a zero score in site k, or vice versa,
for every species. In the presence–absence case, SRuz simplifies to
the Jaccard index of similarity. The complement of Eq. (1) is the

Marczewski–Steinhaus coefficient of dissimilarity, which is a
metric (see e.g., Levandowsky and Winter, 1971) and is given by
the formula

bMSð jkÞ ¼
Pn

i¼1 jxi j � xikj
T jk

: (2)

Set theoretically, the numerator is the symmetric difference of
the abundance data representing the two sites (Orlóci, 1978),
corresponding to the total amount of abundances in which they
differ. bMS reflects the relativized abundance turnover between the
two sites, which conceptually corresponds to pairwise beta

diversity for abundances in our framework.
The sum of absolute differences in the numerator of Eq. (2) can

be decomposed into two fractions, which are of central importance
in developing the new methodology in this paper. These are
analogous to the two fractions obtained from the Jaccard
dissimilarity coefficient for presence–absence data (Podani and
Schmera, 2011; Carvalho et al., 2012). The first fraction is the
absolute deviation between the site totals and is interpretable
ecologically as a reflection of the difference between the carrying
capacity of the two sites. This, divided by Tjk yields the following
quantity

aDrelð jkÞ ¼
Pn

i¼1 xi j �
Pn

i¼1 xik

�� ��
T jk

(3)

which is called the relativized abundance difference measure.
(Superscript a distinguishes this function and the forthcoming
equations from those applicable to presence–absence data as used
in Podani and Schmera, 2011.) Minimum value, i.e., zero is
obtained when the site totals are identical. In practice, it never
takes the maximum value, that is 1, because this is possible only if
one of the sites is completely empty. The complement of
relativized abundance difference is the relativized abundance

agreement, given by the following formula:

aArelð jkÞ ¼
T jk �

Pn
i¼1 xi j �

Pn
i¼1 xik

�� ��
T jk

(4)

The second fraction of the Marczewski–Steinhaus coefficient
comes from the sum of abundances in site j that are replaced by the
same amount of abundances in site k, pertaining to completely
different species. This is called the absolute abundance replace-
ment for the sites. Division by Tjk gives the relativized abundance

replacement function

aRrelð jkÞ ¼
Pn

i¼1 xi j � xik

�� ���
Pn

i¼1 xi j �
Pn

i¼1 xik

�� ��
T jk

(5)

for the two sites being compared. Its value is zero when the
difference between site totals equals the sum of absolute
differences between the abundances – which is possible only if
the two sites can be labelled by j and k such that xij � xik for all i. In
words, abundances in one site can exceed the abundances in the
other for none of the species. In this case, there are no abundances
that are replaced, only surplus (or gain) on one side. The maximum
value, 1, reflects a situation in which the sum of absolute
differences equals the sum of maxima: it is possible only if site
totals are the same and the two sites share no species at all.
Ecologically, this value reflects agreement in the carrying capacity
of the two sites while environmental conditions are completely
different causing maximum floristic dissimilarity.

Now, we introduce a nestedness concept for abundance data and
define a function for its quantification. Perfect nestedness will be
understood as a situation when abundances in one site are not
smaller than the abundances in the other for every species. For
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