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a  b  s  t  r  a  c  t

Terrestrial  ecosystem  gross  primary  production  (GPP)  is  the  largest component  in  the  global  carbon  cycle.
The enhanced  vegetation  index  (EVI)  has  been  proven  to be strongly  correlated  with  annual  GPP within
several  biomes.  However,  the  annual  GPP-EVI  relationship  and  associated  environmental  regulations
have  not  yet been  comprehensively  investigated  across  biomes  at  the global  scale.  Here  we explored
relationships  between  annual  integrated  EVI  (iEVI)  and  annual  GPP  observed  at  155  flux  sites,  where
GPP  was  predicted  with  a  log-log  model:  ln(GPP)  = a  × ln(iEVI)  +  b. iEVI  was  computed  from  MODIS
monthly  EVI  products  following  removal  of values  affected  by  snow  or cold  temperature  and  without
calculating  growing  season  duration.  Through  categorisation  of  flux  sites  into  12  land  cover  types,  the
ability  of iEVI  to  estimate  GPP  was  considerably  improved  (R2 from  0.62  to 0.74,  RMSE  from  454.7  to
368.2  g C m−2 yr−1).  The  biome-specific  GPP-iEVI  formulae  generally  showed  a consistent  performance
in  comparison  to  a global  benchmarking  dataset  (R2 =  0.79,  RMSE  = 387.8  g  C m−2 yr−1).  Specifically,  iEVI
performed  better  in  cropland  regions  with  high  productivity  but poorer  in  forests.  The  ability  of  iEVI in
estimating  GPP  was better  in  deciduous  biomes  (except  deciduous  broadleaf  forest)  than  in  evergreen
due  to the large  seasonal  signal  in  iEVI  in deciduous  biomes.  Likewise,  GPP  estimated  from  iEVI  was  in
a  closer  agreement  to global  benchmarks  at mid  and  high-latitudes,  where  deciduous  biomes  are  more
common  and  cloud  cover  has  a smaller  effect  on  remote  sensing  retrievals.  Across  biomes,  a  significant  and
negative  correlation  (R2 = 0.37,  p  <  0.05)  was  observed  between  the  strength  (R2)  of  GPP-iEVI  relationships
and  mean  annual  maximum  leaf area  index  (LAImax), and the relationship  between  the  strength  and
mean  annual  precipitation  followed  a similar  trend.  LAImax also  revealed  a  scaling  effect  on GPP-iEVI
relationships.  Our results  suggest  that  iEVI  provides  a  very  simple  but robust  approach  to estimate  spatial
patterns  of global  annual  GPP  whereas  its effect  is comparable  to various  light-use-efficiency  and  data-
driven  models.  The  impact  of vegetation  structure  on accuracy  and  sensitivity  of  EVI  in estimating  spatial
GPP provides  valuable  clues  to improve  EVI-based  models.
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1. Introduction

Terrestrial gross primary production (GPP) is the amount of
carbon captured from the atmosphere through vegetation photo-
synthesis (Beer et al., 2010). Vegetation GPP is a key component of
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the terrestrial carbon balance and is of fundamental importance to
human society because plants provide food, fiber and wood supply
and also contribute to the production of environmental conditions
suitable for human habitation (Melillo et al., 1993; Xiao et al., 2005;
Zhao et al., 2005). Therefore, continuous monitoring and accurate
estimation of GPP is required to ensure the long term security
of terrestrial ecosystem services and to address issues pertaining
to the global carbon cycle including determination of the size of
the terrestrial carbon sink, prediction of vegetation dynamics, and
management of forests and grasslands (Ciais et al., 2005; Ma  et al.,
2013; Sims et al., 2006b).

GPP can be calculated as the sum of vegetation assimilated
carbon flux, partitioned from net carbon exchange measured at
eddy covariance (EC) tower sites (Baldocchi et al., 2001; Reichstein
et al., 2007), but such observations are limited, both temporally
and spatially. Remote sensing technique provides a promising
approach to overcome these limitations. Various diagnostic mod-
els taking advantage of spatially extensive remote sensing and
meteorological data have been developed to estimate GPP across
stand-to-global scales for a relatively long period (e.g., Jung et al.,
2008; Running et al., 2004; Sims et al., 2008; Xiao et al., 2005).
These models can be generally partitioned into three categories:
light-use-efficiency (LUE) models, machine learning algorithms
and simple empirical models (Verma et al., 2014). The LUE theory
was first proposed by Monteith (1972), in which GPP is generally
represented as the product of LUE, photosynthetically active radi-
ation (PAR), the fraction of PAR absorbed by vegetation (fAPAR),
and environmental scalars. fAPAR is a strong function of vegeta-
tion greenness, as measured by vegetation indices (VIs), such as the
normalized difference vegetation index (NDVI; e.g., Goward and
Huemmrich, 1992) and the enhanced vegetation index (EVI; e.g.,
Xiao et al., 2004a,b). However, it is difficult to estimate LUE, which
varies among plant functional types, and can be down-regulated by
temperature, soil water content, vapour pressure deficit (VPD), and
leaf phenology (Xiao et al., 2005). Another deficiency of LUE mod-
els is the coarse resolution of climate inputs, which are often only
available at a large scale. This may  introduce significant errors to
estimations of GPP (Heinsch et al., 2006; Zhao et al., 2005) and hin-
der the acquisition of fine-resolution GPP estimates at large scales.
Machine learning algorithms, such as artificial neural networks
(Papale and Valentini, 2003), support vector machines (Yang et al.,
2007), and model tree ensembles (Jung et al., 2009), predict GPP
based on the non-functional patterns extracted in training data set.
Obviously, the accuracy of machine learning algorithms relies on
the abundance and representativeness of input information includ-
ing remote sensed vegetation properties, meteorological, and land
cover data (Jung et al., 2011). Therefore, the use of machine learning
algorithms is also limited by the coarse resolution of meteorological
data. Moreover, in many cases machine learning algorithms show
no better performance than LUE models in specific ecosystems (e.g.,
Yang et al., 2007). Consequently, simple empirical models utilizing
remote sensing proxies of vegetation photosynthesis activity (with
or without meteorological data) gain consistent interest in esti-
mating both spatial and temporal variations of GPP (e.g., Jung et al.,
2008; Rahman et al., 2005; Sims et al., 2006b).

The growing season NDVI and EVI show strong relationships
with vegetation production over one or two week intervals (e.g.,
Mao  et al., 2014; Rahman et al., 2005; Sims et al., 2006a,b; Wylie
et al., 2003). Vegetation indices per se are transformations of two
or more spectral bands to enhance the signal derived from vege-
tation properties (Huete et al., 2002). Both NDVI and EVI employ
surface bidirectional reflectances of red and near-infrared spectral
bands that are sensitive to leaf chlorophyll content (Huete et al.,
2002), which converts light to energy consumed by photosynthe-
sis. NDVI is limited due to its saturation over dense vegetation and
large sensitivity to canopy background brightness (Huete et al.,

2002), whereas EVI can improve performance in regions of high
biomass through a decoupling of the canopy and background sig-
nals and a reduction in the influence of atmospheric conditions
using a blue spectral reflectance (Huete et al., 2002). This makes EVI
more responsive to canopy structural variations and thus EVI is bet-
ter correlated with GPP than NDVI in evergreen (Xiao et al., 2004a)
and deciduous (Xiao et al., 2004b) forests as well as in croplands
(Xiao et al., 2005). Compared to LUE models, the growing season
EVI or EVI-based models (e.g., Temperature-Greenness model; Sims
et al., 2008) provide a comparable or better estimation of GPP at
both the 16-day (Sims et al., 2008, 2006b) and annual (Verma et al.,
2014) time-scales. As well as EVI, cumulative growing season fAPAR
with separate functions for herbaceous plants, evergreen forests
and all other vegetation types has been used to predict annual GPP
in Europe (Jung et al., 2008). The disadvantage of selecting fAPAR
against EVI is subtle: fAPAR consists of fractional absorbance of PAR
absorbed by both chlorophyll and by non-photosynthetic pigments
(Zhang et al., 2005), while EVI is much closer to the fraction of PAR
absorbed by chlorophyll. Moreover, fAPAR shows no significant cor-
relation with GPP in deciduous broadleaf forests (Jung et al., 2008).
Therefore, the use of EVI should be favored over fAPAR in correlat-
ing to GPP. However, current studies on EVI-GPP relationships or
EVI-based models have been focused within only a limited number
of biomes and these EVI-based models generally need to compute
the start and end or the length of the growing season period (Jung
et al., 2008; Sims et al., 2008, 2006b; Verma et al., 2014), which
constitutes an extra source of uncertainty. Simultaneously, envi-
ronmental influences on the ability of EVI to estimate GPP  across
a wide spectrum of biomes have not yet been investigated (Sims
et al., 2006b; Sjöström et al., 2011).

In this study, we used the annual integral of MODIS  EVI (iEVI),
which only needs removal of those values that have been affected
by cold temperature or snow and subtracting the soil background
signal, to regress with annual eddy covariance measured GPP across
12 land cover types. The developed set of formulae were then
applied at the global scale and compared with a widely used GPP
benchmark dataset to evaluate the effectiveness and robustness of
iEVI, thereby determining whether iEVI can serve as a reference
for other GPP models over a fine-to-coarse resolution. The impacts
of environmental conditions on iEVI in estimating GPP were fur-
ther investigated across biomes, to improve our understanding of
the underlying mechanistic processes that differentiate responses
of vegetation photosynthetic activity to remote sensing spectral
measurements among biomes.

2. Data and methods

2.1. Eddy covariance and meteorological data

The eddy covariance method is a micrometeorological tech-
nique that directly measures net carbon, water and energy fluxes
across a horizontal plane between vegetation canopies and the
atmosphere (Aubinet et al., 2000; Baldocchi et al., 2001). In the
present study a total of 155 sites (Supplementary Table S1) were
selected, consisting of 624 site-years of data and representing a
worldwide spectrum of biomes and climate regimes with excellent
coverage in North America, Eurasia and Oceania (Table 1, Fig. 1;
Baldocchi, 2008; Baldocchi et al., 2001; Wang and Dickinson, 2012).

The flux data were obtained from three sources: (1) a small
fraction (mainly high-latitude and wetland sites) was collected
directly from published studies, which only included annual val-
ues of flux and meteorological forcing; (2) a larger fraction was
contributed directly from participating site researchers; and (3)
the majority were from FLUXNET level 2 or level 4 products
that were downloaded from the database. Of the latter two cat-
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