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a  b  s  t  r  a  c  t

Previous  studies  have  demonstrated  that  the  pattern  of  land  surface  dynamic  feedbacks  (LSDF)  based
on remote  sensing  images  after a rainfall  event  can  be used  to derive  environmental  covariates  to  assist
in  predicting  soil  texture  variation  over low-relief  areas.  However,  the impact  of the  rainfall  magnitude
on  the  performance  of  these  covariates  has  not  been  thoroughly  investigated.  The objective  of this  study
was  to  investigate  this  impact  during  ten  observation  periods  following  rainfall  events of  different  magni-
tudes  (0–40 mm).  An individual  predictive  soil  mapping  method  (iPSM)  was  used  to predict  soil texture
over  space  based  on  the  environmental  covariates  derived  from  land  surface  dynamic  feedbacks.  The
prediction  error showed  strong  negative  correlation  with  rainfall  magnitude  (Pearson’s  r between  root-
mean  squared  error of  prediction  and  rainfall magnitude  =  −0.943  for percentage  of  sand  and  −0.883  for
percentage  of  clay).  When  the rainfall  reaches  a certain  magnitude,  the  prediction  error  becomes  sta-
ble.  The  recommended  rain  magnitude  (threshold)  using  LSDF  method  in this  study  area  is larger  than
20  mm  for both  sand  and  clay percentage.  The  predictive  maps  based  on  different  observed  periods  with
similar  rainfall  magnitudes  show  only  slight  differences.  Rainfall  magnitude  can  thus  be  said  to  have  a
significant  impact  on the  prediction  accuracy  of  soil texture  mapping.  Greater  rainfall  magnitude  will
improve  the  prediction  accuracy  when  using  the  LSDF.  And  high  wind  speed,  high  evaporation  and  low
relative  humidity  during  the  observed  periods  also  improved  the  prediction  accuracy,  all  by stimulating
differential  soil  drying.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Low relief areas generally are agricultural areas, it is necessary to
understand their soil spatial distribution. Local interpolation meth-
ods such as kriging are usually adopted in such areas, but these
have strict requirements on the number and distribution of samples
(Goovaerts, 1999; Li, 2010; Zhang et al., 2013; Mueller et al., 2004;
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Bragato, 2004). The soil-landscape models, such as multiple linear
regression, regression-kriging, artificial neural networks, random
forest, and similarity-based method, are most widely used in digital
soil mapping (Kumar et al., 2012; Qiu et al., 2003; Song et al., 2016;
Wiesmeier et al., 2011; Zhu, 1997, 2000; Zhu et al., 2015). These
models use easy-to-measure, soil-forming factors which mainly
include landform, vegetation, climate, parent material, and etc. to
predict the spatial variation of soil. However, in low relief areas,
the spatial variation of landform is too gentle to indicate soil spa-
tial variation (Liu et al., 2012; Zhu et al., 2010; Pei et al., 2010;
Santos et al., 1997). Moreover, long-term cultivation and interfer-
ence by human activities have weakened the relationship between
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soil properties and vegetation (Zhao et al., 2014; Zhu et al., 2010;
Ogle et al., 2005; Angers and Caron, 1998). New environmental
covariates have thus been sought that can be used to predict soil
spatial variation over low-relief areas (Guo et al., 2015, 2016; Zhu
et al., 2010; Liu et al., 2012; Chang et al., 2003; Jackson et al., 1999).

The rapid development of remote sensing technology provides
the potential to extract soil information at scales from regional to
global (Croft et al., 2012; Montzka et al., 2011; Dent et al., 2013;
Rouze et al., 2015; Dobos et al., 2000). Single multispectral or hyper-
spectral sensors have frequently been used to predict the spatial
variation of soil attributes (Ahmed and Iqbal, 2014; Krishnan et al.,
1981; Shepherd and Walsh, 2002; Stoorvogel et al., 2009). Ahmed
and Iqbal (2014) explored the potential of spectral data from a
Landsat TM5  satellite for evaluating the spatial variability of surface
soil texture and organic matter and obtained good results. Dobos
et al. (2000) tested the effect of the Advanced Very High Resolution
Radiometer (AVHRR) data on the soil classification in a floodplain
area of northern Hungary using NDVI and five AVHRR channels. But
single AVHRR images failed to capture information for distinguish-
ing soil conditions. The single multispectral image generally cannot
provide comprehensive information about overall changes in soil
reflectance, because they are by definition static, i.e., representing
only one moment in time. And due to the variety of land cover, cul-
tivation management, sensor noise, and atmospheric conditions,
the relationships between a single spectral band and soil proper-
ties are often weak (Stoorvogel et al., 2009; Anderson and Croft,
2009; Mulder et al., 2011).

In order to overcome these limitations, Zhu et al. (2010) and Liu
et al. (2012) proposed a method called “land surface dynamic feed-
back” (LSDF) to distinguish soil conditions in low-relief areas where
common covariates such as topography and vegetation indices are
ineffective at revealing soil spatial variation. They hypothesized
that differences in soils would be indicated by differences in land
surface feedback patterns captured by high temporal resolution
remote sensing observations during a short drying period after a
major rain event. The studies considered rainfall an input to land
surface. Changes in soil reflectance that occurred in the process
of drying after a rain event were considered dynamic feedback in
response to the rainfall event (Zhu et al., 2010). The method was
tested in several areas with good results (Guo et al., 2015; Liu et al.,
2012; Zhao et al., 2014; Zhu et al., 2010; Guo et al., 2016). Liu et al.
(2012) applied the approach to map  soil texture in a low-relief area
in south-central Manitoba, Canada. Guo et al. (2015) proposed an
approach to fill the data gaps caused by cloud cover and reduce the
data collection requirement for LSDF methods. In addition, Zhao
et al. (2014) evaluated the method for mapping SOM content in
two counties of Jiangsu Province.

In order to capture the changes in soil reflectance from wet  to
dry, a key step is the selection of a period for land surface response
of remote sensing feedback. Zhu et al. (2010) suggested three
requirements for the selection. First, the area of interest should
have a long period with little or no rain so that the area is very dry.
Second, the magnitude of rainfall should be great enough to force
the land surface to produce a clear response. Third, there should be
no precipitation over the area in the days after the rainfall event. The
impact of rainfall magnitude of the selected event on mapping accu-
racy was not investigated, however. It is also important to know
how consistent the prediction results are when different observa-
tion periods are selected after a similar rain event. This is because
cloudy conditions can prevent acquiring all post-event imagery for
all of the required days.

Thus this study has two main objectives. The first is to deter-
mine how rainfall amount affects the prediction accuracy of digital
soil mapping using the LSDF method. We  use soil texture over areas
with low relief as an example and an individual predictive soil map-
ping method (iPSM) proposed by Zhu et al. (2015) to conduct the

digital soil mapping of texture based on the covariates derived from
land surface dynamic feedbacks. The second objective is to examine
the consistency of the results when different periods are selected
after similar rain events. We  chose soil texture in this study, espe-
cially for the second objective, because it hardly varies over years
or even decades, unlike organic matter or chemical properties.

2. Materials and methods

2.1. Study area and data sets

The study area is located in the north of XuanCheng city in
Anhui Province of China (Fig. 1). It covers approximately 2357 km2

(31◦00′N–31◦18′N and 118◦36′W–119◦18′W).  The land is mainly
farmland including paddy fields and dry land on a low-relief land-
scape. The area has experienced intensive human activity in recent
decades and its soil types are primarily Anthrosols in both the
Chinese Soil Taxonomy system (Chinese Soil Taxonomy Research
Group, 2001) and the World Reference Base for Soil Resources (FAO,
2014). The climate is warm and humid in summer and relatively
cool and dry in winter. According to the climate data set (V3.0) of the
international exchange station of China, the average temperature in
the study area is approximately 14–16 ◦C and annual average pre-
cipitation is about 1300–1400 mm,  most of which occurs between
May  and October. The soil parent materials are Quaternary ver-
micule boulder and gravel clay, Quaternary siltstone, gravel and
sandy clay, conglomerate, limestone, granite and granodiorite. The
area was chosen mostly for its gentle terrain.

Sixty-nine topsoil samples (0–20 cm)  (Fig. 1) were collected
from a campaign in 2011 for other purposes in previous studies
(Zhang et al., 2016; Yang et al., 2016). Several sampling strategies
were adopted in the campaign. Extensive discussion on those sam-
pling strategies is not necessary here because the mapping method
used in this study has no requirement on the distribution or num-
ber of soil samples. Interested readers are referred to the above
references for details. The sampling density in our study area is
one sample every 34 km2. Percentage of soil sand (0.05–2 mm  size
fraction, % by weight) and percentage of soil clay (< 0.002 mm size
fraction, % by weight) were used as the target variables. These were
analyzed by a laser diffraction technique using a Mastersizer 2000
laser particle size analyzer (Wang et al., 2013). The frequency per-
centage histograms of soil sand and soil clay percentage are shown
in Fig. 2. The variation for soil sand percentage is much greater than
for soil clay.

The environmental covariates extracted from the LSDF method
mentioned in Section 2.2.2 were used to predict soil texture. Par-
ent material as the original source of soil particles, elevation even
in low relief areas as a factor in topsoil redistribution and veg-
etation as it affects transpiration also affect LSDF. Thus, parent
material, elevation and enhanced vegetation index (EVI) were also
acquired and resampled as necessary to the coarsest resolution,
i.e., 250 m of MODIS. The parent material was  derived from a
lithology map  generated from the 1: 500 000 geological map of
China, and rasterized to a 250 m grid. The Digital Elevation Model
(DEM) was  obtained from the Shuttle Radar Topographic Mission
(SRTM) (http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp). The
EVI data were obtained from the MODIS Vegetation Indices product
(MOD13Q1) over the observation period (http://ladsweb.nascom.
nasa.gov/data/search.html).

2.2. Methodology

The study used the environmental covariates derived from LSDF
after different rainfall events to make a predictive map  of soil tex-
ture and analyze the impact of rainfall magnitude on mapping

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html


Download English Version:

https://daneshyari.com/en/article/6292762

Download Persian Version:

https://daneshyari.com/article/6292762

Daneshyari.com

https://daneshyari.com/en/article/6292762
https://daneshyari.com/article/6292762
https://daneshyari.com

